Infusing theory into deep learning for interpretable reactivity prediction
Machine learning faces challenges in catalyst design due to its black-box nature. Here, the authors develop a theory-infused neural network approach that integrates deep learning algorithms with the well-established d-band theory of chemisorption for reactivity prediction of transition-metal surface...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d84456e3439c4cab9218e579eb71a020 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d84456e3439c4cab9218e579eb71a020 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d84456e3439c4cab9218e579eb71a0202021-12-02T17:19:40ZInfusing theory into deep learning for interpretable reactivity prediction10.1038/s41467-021-25639-82041-1723https://doaj.org/article/d84456e3439c4cab9218e579eb71a0202021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25639-8https://doaj.org/toc/2041-1723Machine learning faces challenges in catalyst design due to its black-box nature. Here, the authors develop a theory-infused neural network approach that integrates deep learning algorithms with the well-established d-band theory of chemisorption for reactivity prediction of transition-metal surfaces.Shih-Han WangHemanth Somarajan PillaiSiwen WangLuke E. K. AchenieHongliang XinNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Shih-Han Wang Hemanth Somarajan Pillai Siwen Wang Luke E. K. Achenie Hongliang Xin Infusing theory into deep learning for interpretable reactivity prediction |
description |
Machine learning faces challenges in catalyst design due to its black-box nature. Here, the authors develop a theory-infused neural network approach that integrates deep learning algorithms with the well-established d-band theory of chemisorption for reactivity prediction of transition-metal surfaces. |
format |
article |
author |
Shih-Han Wang Hemanth Somarajan Pillai Siwen Wang Luke E. K. Achenie Hongliang Xin |
author_facet |
Shih-Han Wang Hemanth Somarajan Pillai Siwen Wang Luke E. K. Achenie Hongliang Xin |
author_sort |
Shih-Han Wang |
title |
Infusing theory into deep learning for interpretable reactivity prediction |
title_short |
Infusing theory into deep learning for interpretable reactivity prediction |
title_full |
Infusing theory into deep learning for interpretable reactivity prediction |
title_fullStr |
Infusing theory into deep learning for interpretable reactivity prediction |
title_full_unstemmed |
Infusing theory into deep learning for interpretable reactivity prediction |
title_sort |
infusing theory into deep learning for interpretable reactivity prediction |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/d84456e3439c4cab9218e579eb71a020 |
work_keys_str_mv |
AT shihhanwang infusingtheoryintodeeplearningforinterpretablereactivityprediction AT hemanthsomarajanpillai infusingtheoryintodeeplearningforinterpretablereactivityprediction AT siwenwang infusingtheoryintodeeplearningforinterpretablereactivityprediction AT lukeekachenie infusingtheoryintodeeplearningforinterpretablereactivityprediction AT hongliangxin infusingtheoryintodeeplearningforinterpretablereactivityprediction |
_version_ |
1718381052351741952 |