Infusing theory into deep learning for interpretable reactivity prediction

Machine learning faces challenges in catalyst design due to its black-box nature. Here, the authors develop a theory-infused neural network approach that integrates deep learning algorithms with the well-established d-band theory of chemisorption for reactivity prediction of transition-metal surface...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shih-Han Wang, Hemanth Somarajan Pillai, Siwen Wang, Luke E. K. Achenie, Hongliang Xin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/d84456e3439c4cab9218e579eb71a020
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d84456e3439c4cab9218e579eb71a020
record_format dspace
spelling oai:doaj.org-article:d84456e3439c4cab9218e579eb71a0202021-12-02T17:19:40ZInfusing theory into deep learning for interpretable reactivity prediction10.1038/s41467-021-25639-82041-1723https://doaj.org/article/d84456e3439c4cab9218e579eb71a0202021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25639-8https://doaj.org/toc/2041-1723Machine learning faces challenges in catalyst design due to its black-box nature. Here, the authors develop a theory-infused neural network approach that integrates deep learning algorithms with the well-established d-band theory of chemisorption for reactivity prediction of transition-metal surfaces.Shih-Han WangHemanth Somarajan PillaiSiwen WangLuke E. K. AchenieHongliang XinNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Shih-Han Wang
Hemanth Somarajan Pillai
Siwen Wang
Luke E. K. Achenie
Hongliang Xin
Infusing theory into deep learning for interpretable reactivity prediction
description Machine learning faces challenges in catalyst design due to its black-box nature. Here, the authors develop a theory-infused neural network approach that integrates deep learning algorithms with the well-established d-band theory of chemisorption for reactivity prediction of transition-metal surfaces.
format article
author Shih-Han Wang
Hemanth Somarajan Pillai
Siwen Wang
Luke E. K. Achenie
Hongliang Xin
author_facet Shih-Han Wang
Hemanth Somarajan Pillai
Siwen Wang
Luke E. K. Achenie
Hongliang Xin
author_sort Shih-Han Wang
title Infusing theory into deep learning for interpretable reactivity prediction
title_short Infusing theory into deep learning for interpretable reactivity prediction
title_full Infusing theory into deep learning for interpretable reactivity prediction
title_fullStr Infusing theory into deep learning for interpretable reactivity prediction
title_full_unstemmed Infusing theory into deep learning for interpretable reactivity prediction
title_sort infusing theory into deep learning for interpretable reactivity prediction
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d84456e3439c4cab9218e579eb71a020
work_keys_str_mv AT shihhanwang infusingtheoryintodeeplearningforinterpretablereactivityprediction
AT hemanthsomarajanpillai infusingtheoryintodeeplearningforinterpretablereactivityprediction
AT siwenwang infusingtheoryintodeeplearningforinterpretablereactivityprediction
AT lukeekachenie infusingtheoryintodeeplearningforinterpretablereactivityprediction
AT hongliangxin infusingtheoryintodeeplearningforinterpretablereactivityprediction
_version_ 1718381052351741952