Infusing theory into deep learning for interpretable reactivity prediction
Machine learning faces challenges in catalyst design due to its black-box nature. Here, the authors develop a theory-infused neural network approach that integrates deep learning algorithms with the well-established d-band theory of chemisorption for reactivity prediction of transition-metal surface...
Guardado en:
Autores principales: | Shih-Han Wang, Hemanth Somarajan Pillai, Siwen Wang, Luke E. K. Achenie, Hongliang Xin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d84456e3439c4cab9218e579eb71a020 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
por: Siwen Wang, et al.
Publicado: (2020) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Ellery Wulczyn, et al.
Publicado: (2021) -
Knowledge-infused Learning for Entity Prediction in Driving Scenes
por: Ruwan Wickramarachchi, et al.
Publicado: (2021) -
iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients
por: Jun Wang, et al.
Publicado: (2021) -
GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
por: Arno van Hilten, et al.
Publicado: (2021)