Climatic suitability of the eastern paralysis tick, Ixodes holocyclus, and its likely geographic distribution in the year 2050
Abstract The eastern paralysis tick, Ixodes holocyclus is one of two ticks that cause potentially fatal tick paralysis in Australia, and yet information on the full extent of its present or potential future spatial distribution is not known. Occurrence data for this tick species collected over the p...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d848362dbfc84f8dbc46036e04916253 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d848362dbfc84f8dbc46036e04916253 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d848362dbfc84f8dbc46036e049162532021-12-02T16:06:43ZClimatic suitability of the eastern paralysis tick, Ixodes holocyclus, and its likely geographic distribution in the year 205010.1038/s41598-021-94793-22045-2322https://doaj.org/article/d848362dbfc84f8dbc46036e049162532021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94793-2https://doaj.org/toc/2045-2322Abstract The eastern paralysis tick, Ixodes holocyclus is one of two ticks that cause potentially fatal tick paralysis in Australia, and yet information on the full extent of its present or potential future spatial distribution is not known. Occurrence data for this tick species collected over the past two decades, and gridded environmental variables at 1 km2 resolution representing climate conditions, were used to derive correlative ecological niche models to predict the current and future potential distribution. Several hundreds of candidate models were constructed with varying combinations of model parameters, and the best-fitting model was chosen based on statistical significance, omission rate, and Akaike Information Criterion (AICc). The best-fitting model matches the currently known distribution but also extends through most of the coastal areas in the south, and up to the Kimbolton peninsula in Western Australia in the north. Highly suitable areas are present around south of Perth, extending towards Albany, Western Australia. Most areas in Tasmania, where the species is not currently present, are also highly suitable. Future spatial distribution of this tick in the year 2050 indicates moderate increase in climatic suitability from the present-day prediction but noticeably also moderate to low loss of climatically suitable areas elsewhere.Ram K. RaghavanZ. KoestelR. IerardiA. Townsend PetersonMarlon E. CobosNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ram K. Raghavan Z. Koestel R. Ierardi A. Townsend Peterson Marlon E. Cobos Climatic suitability of the eastern paralysis tick, Ixodes holocyclus, and its likely geographic distribution in the year 2050 |
description |
Abstract The eastern paralysis tick, Ixodes holocyclus is one of two ticks that cause potentially fatal tick paralysis in Australia, and yet information on the full extent of its present or potential future spatial distribution is not known. Occurrence data for this tick species collected over the past two decades, and gridded environmental variables at 1 km2 resolution representing climate conditions, were used to derive correlative ecological niche models to predict the current and future potential distribution. Several hundreds of candidate models were constructed with varying combinations of model parameters, and the best-fitting model was chosen based on statistical significance, omission rate, and Akaike Information Criterion (AICc). The best-fitting model matches the currently known distribution but also extends through most of the coastal areas in the south, and up to the Kimbolton peninsula in Western Australia in the north. Highly suitable areas are present around south of Perth, extending towards Albany, Western Australia. Most areas in Tasmania, where the species is not currently present, are also highly suitable. Future spatial distribution of this tick in the year 2050 indicates moderate increase in climatic suitability from the present-day prediction but noticeably also moderate to low loss of climatically suitable areas elsewhere. |
format |
article |
author |
Ram K. Raghavan Z. Koestel R. Ierardi A. Townsend Peterson Marlon E. Cobos |
author_facet |
Ram K. Raghavan Z. Koestel R. Ierardi A. Townsend Peterson Marlon E. Cobos |
author_sort |
Ram K. Raghavan |
title |
Climatic suitability of the eastern paralysis tick, Ixodes holocyclus, and its likely geographic distribution in the year 2050 |
title_short |
Climatic suitability of the eastern paralysis tick, Ixodes holocyclus, and its likely geographic distribution in the year 2050 |
title_full |
Climatic suitability of the eastern paralysis tick, Ixodes holocyclus, and its likely geographic distribution in the year 2050 |
title_fullStr |
Climatic suitability of the eastern paralysis tick, Ixodes holocyclus, and its likely geographic distribution in the year 2050 |
title_full_unstemmed |
Climatic suitability of the eastern paralysis tick, Ixodes holocyclus, and its likely geographic distribution in the year 2050 |
title_sort |
climatic suitability of the eastern paralysis tick, ixodes holocyclus, and its likely geographic distribution in the year 2050 |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/d848362dbfc84f8dbc46036e04916253 |
work_keys_str_mv |
AT ramkraghavan climaticsuitabilityoftheeasternparalysistickixodesholocyclusanditslikelygeographicdistributionintheyear2050 AT zkoestel climaticsuitabilityoftheeasternparalysistickixodesholocyclusanditslikelygeographicdistributionintheyear2050 AT rierardi climaticsuitabilityoftheeasternparalysistickixodesholocyclusanditslikelygeographicdistributionintheyear2050 AT atownsendpeterson climaticsuitabilityoftheeasternparalysistickixodesholocyclusanditslikelygeographicdistributionintheyear2050 AT marlonecobos climaticsuitabilityoftheeasternparalysistickixodesholocyclusanditslikelygeographicdistributionintheyear2050 |
_version_ |
1718384934874251264 |