Applying a hierarchical clustering on principal components approach to identify different patterns of the SARS-CoV-2 epidemic across Italian regions
Abstract Italy has experienced the epidemic of Severe Acute Respiratory Syndrome Coronavirus 2, which spread at different times and with different intensities throughout its territory. We aimed to identify clusters with similar epidemic patterns across Italian regions. To do that, we defined a set o...
Guardado en:
Autores principales: | Andrea Maugeri, Martina Barchitta, Guido Basile, Antonella Agodi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d85f1c2647a14bc1ad59c8efc94a4782 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Burden of Healthcare-Associated Infections in Sicily, Italy: Estimates from the Regional Point Prevalence Surveys 2016–2018
por: Martina Barchitta, et al.
Publicado: (2021) -
Applying of hierarchical clustering to analysis of protein patterns in the human cancer-associated liver.
por: Natalia A Petushkova, et al.
Publicado: (2014) -
Chemostratigraphic Analysis of Wufeng and Longmaxi Formation in Changning, Sichuan, China: Achieved by Principal Component and Constrained Clustering Analysis
por: Zhifeng Zhang, et al.
Publicado: (2021) -
Clinical and biological clusters of sepsis patients using hierarchical clustering.
por: Grégory Papin, et al.
Publicado: (2021) -
Robust Bilinear Probabilistic Principal Component Analysis
por: Yaohang Lu, et al.
Publicado: (2021)