Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data
Live-cell Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></in...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d866c1d7c1a5432ab339cbd65077aec0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d866c1d7c1a5432ab339cbd65077aec0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d866c1d7c1a5432ab339cbd65077aec02021-11-11T17:14:30ZTime-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data10.3390/ijms2221117921422-00671661-6596https://doaj.org/article/d866c1d7c1a5432ab339cbd65077aec02021-10-01T00:00:00Zhttps://www.mdpi.com/1422-0067/22/21/11792https://doaj.org/toc/1661-6596https://doaj.org/toc/1422-0067Live-cell Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> fluorescence microscopy is a cornerstone of cellular signaling analysis and imaging. The demand for high spatial and temporal imaging resolution is, however, intrinsically linked to a low signal-to-noise ratio (SNR) of the acquired spatio-temporal image data, which impedes on the subsequent image analysis. Advanced deconvolution and image restoration algorithms can partly mitigate the corresponding problems but are usually defined only for <i>static</i> images. Frame-by-frame application to spatio-temporal image data neglects inter-frame contextual relationships and temporal consistency of the imaged biological processes. Here, we propose a variational approach to <i>time-dependent</i> image restoration built on entropy-based regularization specifically suited to process low- and lowest-SNR fluorescence microscopy data. The advantage of the presented approach is demonstrated by means of four datasets: synthetic data for in-depth evaluation of the algorithm behavior; two datasets acquired for analysis of initial Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> microdomains in T-cells; finally, to illustrate the transferability of the methodical concept to different applications, one dataset depicting spontaneous Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> signaling in jGCaMP7b-expressing astrocytes. To foster re-use and reproducibility, the source code is made publicly available.Lena-Marie WoelkSukanya A. Kannabiran Valerie J. Brock Christine E. Gee Christian Lohr Andreas H. Guse Björn-Philipp Diercks René WernerMDPI AGarticleCa<sup>2+</sup> imagingfluorescence microscopylive-cell imaginglow signal-to-noise ratiodeconvolutionimage restorationBiology (General)QH301-705.5ChemistryQD1-999ENInternational Journal of Molecular Sciences, Vol 22, Iss 11792, p 11792 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Ca<sup>2+</sup> imaging fluorescence microscopy live-cell imaging low signal-to-noise ratio deconvolution image restoration Biology (General) QH301-705.5 Chemistry QD1-999 |
spellingShingle |
Ca<sup>2+</sup> imaging fluorescence microscopy live-cell imaging low signal-to-noise ratio deconvolution image restoration Biology (General) QH301-705.5 Chemistry QD1-999 Lena-Marie Woelk Sukanya A. Kannabiran Valerie J. Brock Christine E. Gee Christian Lohr Andreas H. Guse Björn-Philipp Diercks René Werner Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data |
description |
Live-cell Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> fluorescence microscopy is a cornerstone of cellular signaling analysis and imaging. The demand for high spatial and temporal imaging resolution is, however, intrinsically linked to a low signal-to-noise ratio (SNR) of the acquired spatio-temporal image data, which impedes on the subsequent image analysis. Advanced deconvolution and image restoration algorithms can partly mitigate the corresponding problems but are usually defined only for <i>static</i> images. Frame-by-frame application to spatio-temporal image data neglects inter-frame contextual relationships and temporal consistency of the imaged biological processes. Here, we propose a variational approach to <i>time-dependent</i> image restoration built on entropy-based regularization specifically suited to process low- and lowest-SNR fluorescence microscopy data. The advantage of the presented approach is demonstrated by means of four datasets: synthetic data for in-depth evaluation of the algorithm behavior; two datasets acquired for analysis of initial Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> microdomains in T-cells; finally, to illustrate the transferability of the methodical concept to different applications, one dataset depicting spontaneous Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> signaling in jGCaMP7b-expressing astrocytes. To foster re-use and reproducibility, the source code is made publicly available. |
format |
article |
author |
Lena-Marie Woelk Sukanya A. Kannabiran Valerie J. Brock Christine E. Gee Christian Lohr Andreas H. Guse Björn-Philipp Diercks René Werner |
author_facet |
Lena-Marie Woelk Sukanya A. Kannabiran Valerie J. Brock Christine E. Gee Christian Lohr Andreas H. Guse Björn-Philipp Diercks René Werner |
author_sort |
Lena-Marie Woelk |
title |
Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data |
title_short |
Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data |
title_full |
Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data |
title_fullStr |
Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data |
title_full_unstemmed |
Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data |
title_sort |
time-dependent image restoration of low-snr live-cell ca<sup>2</sup> fluorescence microscopy data |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/d866c1d7c1a5432ab339cbd65077aec0 |
work_keys_str_mv |
AT lenamariewoelk timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata AT sukanyaakannabiran timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata AT valeriejbrock timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata AT christineegee timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata AT christianlohr timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata AT andreashguse timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata AT bjornphilippdiercks timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata AT renewerner timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata |
_version_ |
1718432148282671104 |