High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach
Abstract In search of affordable, flexible, lightweight, efficient and stable supercapacitors, metal oxides have been shown to provide high charge storage capacity but with poor cyclic stability due to structural damage occurring during the redox process. Here, we develop an efficient flexible super...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d868c6b6616a4957b319798d0059d826 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d868c6b6616a4957b319798d0059d826 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d868c6b6616a4957b319798d0059d8262021-12-02T15:04:56ZHigh-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach10.1038/s41598-017-01319-w2045-2322https://doaj.org/article/d868c6b6616a4957b319798d0059d8262017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01319-whttps://doaj.org/toc/2045-2322Abstract In search of affordable, flexible, lightweight, efficient and stable supercapacitors, metal oxides have been shown to provide high charge storage capacity but with poor cyclic stability due to structural damage occurring during the redox process. Here, we develop an efficient flexible supercapacitor obtained by carbonizing abundantly available and recyclable jute. The active material was synthesized from jute by a facile hydrothermal method and its electrochemical performance was further enhanced by chemical activation. Specific capacitance of 408 F/g at 1 mV/s using CV and 185 F/g at 500 mA/g using charge-discharge measurements with excellent flexibility (~100% retention in charge storage capacity on bending) were observed. The cyclic stability test confirmed no loss in the charge storage capacity of the electrode even after 5,000 charge-discharge measurements. In addition, a supercapacitor device fabricated using this carbonized jute showed promising specific capacitance of about 51 F/g, and improvement of over 60% in the charge storage capacity on increasing temperature from 5 to 75 °C. Based on these results, we propose that recycled jute should be considered for fabrication of high-performance flexible energy storage devices at extremely low cost.Camila ZequineC. K. RanaweeraZ. WangPetar R. DvornicP. K. KaholSweta SinghPrashant TripathiO. N. SrivastavaSatbir SinghBipin Kumar GuptaGautam GuptaRam K. GuptaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Camila Zequine C. K. Ranaweera Z. Wang Petar R. Dvornic P. K. Kahol Sweta Singh Prashant Tripathi O. N. Srivastava Satbir Singh Bipin Kumar Gupta Gautam Gupta Ram K. Gupta High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach |
description |
Abstract In search of affordable, flexible, lightweight, efficient and stable supercapacitors, metal oxides have been shown to provide high charge storage capacity but with poor cyclic stability due to structural damage occurring during the redox process. Here, we develop an efficient flexible supercapacitor obtained by carbonizing abundantly available and recyclable jute. The active material was synthesized from jute by a facile hydrothermal method and its electrochemical performance was further enhanced by chemical activation. Specific capacitance of 408 F/g at 1 mV/s using CV and 185 F/g at 500 mA/g using charge-discharge measurements with excellent flexibility (~100% retention in charge storage capacity on bending) were observed. The cyclic stability test confirmed no loss in the charge storage capacity of the electrode even after 5,000 charge-discharge measurements. In addition, a supercapacitor device fabricated using this carbonized jute showed promising specific capacitance of about 51 F/g, and improvement of over 60% in the charge storage capacity on increasing temperature from 5 to 75 °C. Based on these results, we propose that recycled jute should be considered for fabrication of high-performance flexible energy storage devices at extremely low cost. |
format |
article |
author |
Camila Zequine C. K. Ranaweera Z. Wang Petar R. Dvornic P. K. Kahol Sweta Singh Prashant Tripathi O. N. Srivastava Satbir Singh Bipin Kumar Gupta Gautam Gupta Ram K. Gupta |
author_facet |
Camila Zequine C. K. Ranaweera Z. Wang Petar R. Dvornic P. K. Kahol Sweta Singh Prashant Tripathi O. N. Srivastava Satbir Singh Bipin Kumar Gupta Gautam Gupta Ram K. Gupta |
author_sort |
Camila Zequine |
title |
High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach |
title_short |
High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach |
title_full |
High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach |
title_fullStr |
High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach |
title_full_unstemmed |
High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach |
title_sort |
high-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/d868c6b6616a4957b319798d0059d826 |
work_keys_str_mv |
AT camilazequine highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT ckranaweera highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT zwang highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT petarrdvornic highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT pkkahol highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT swetasingh highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT prashanttripathi highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT onsrivastava highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT satbirsingh highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT bipinkumargupta highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT gautamgupta highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach AT ramkgupta highperformanceflexiblesupercapacitorsobtainedviarecycledjutebiowastetoenergystorageapproach |
_version_ |
1718388986056015872 |