Multistrengthening Module-Based Salient Object Detection

Object detection is a classical research problem in computer vision, and it is widely used in the automatic monitoring field of various production safety. However, current object detection techniques often suffer low detection accuracy when an image has a complex background. To solve this problem, t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qian Zhao, Haifeng Wang, Junpeng Dang, Songlin Li, Rong Chang, Yanbin Fang, Zhi Zhang, Jie Peng, Yang Yang
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/d86a278775074e87af483b437ae24ccd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d86a278775074e87af483b437ae24ccd
record_format dspace
spelling oai:doaj.org-article:d86a278775074e87af483b437ae24ccd2021-11-15T01:19:54ZMultistrengthening Module-Based Salient Object Detection1563-514710.1155/2021/2472676https://doaj.org/article/d86a278775074e87af483b437ae24ccd2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/2472676https://doaj.org/toc/1563-5147Object detection is a classical research problem in computer vision, and it is widely used in the automatic monitoring field of various production safety. However, current object detection techniques often suffer low detection accuracy when an image has a complex background. To solve this problem, this paper proposes a double U-shaped multireinforced unit structure network (DUMRN). The proposed network consists of a detection module (DM), a reinforced module (RM), and a salient loss function (SLF). Extensive experiments on five public datasets and a practical application dataset are conducted and compared against nine state-of-the-art methods. The experiment results show the superiority of our method over the state of the art.Qian ZhaoHaifeng WangJunpeng DangSonglin LiRong ChangYanbin FangZhi ZhangJie PengYang YangHindawi LimitedarticleEngineering (General). Civil engineering (General)TA1-2040MathematicsQA1-939ENMathematical Problems in Engineering, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Engineering (General). Civil engineering (General)
TA1-2040
Mathematics
QA1-939
spellingShingle Engineering (General). Civil engineering (General)
TA1-2040
Mathematics
QA1-939
Qian Zhao
Haifeng Wang
Junpeng Dang
Songlin Li
Rong Chang
Yanbin Fang
Zhi Zhang
Jie Peng
Yang Yang
Multistrengthening Module-Based Salient Object Detection
description Object detection is a classical research problem in computer vision, and it is widely used in the automatic monitoring field of various production safety. However, current object detection techniques often suffer low detection accuracy when an image has a complex background. To solve this problem, this paper proposes a double U-shaped multireinforced unit structure network (DUMRN). The proposed network consists of a detection module (DM), a reinforced module (RM), and a salient loss function (SLF). Extensive experiments on five public datasets and a practical application dataset are conducted and compared against nine state-of-the-art methods. The experiment results show the superiority of our method over the state of the art.
format article
author Qian Zhao
Haifeng Wang
Junpeng Dang
Songlin Li
Rong Chang
Yanbin Fang
Zhi Zhang
Jie Peng
Yang Yang
author_facet Qian Zhao
Haifeng Wang
Junpeng Dang
Songlin Li
Rong Chang
Yanbin Fang
Zhi Zhang
Jie Peng
Yang Yang
author_sort Qian Zhao
title Multistrengthening Module-Based Salient Object Detection
title_short Multistrengthening Module-Based Salient Object Detection
title_full Multistrengthening Module-Based Salient Object Detection
title_fullStr Multistrengthening Module-Based Salient Object Detection
title_full_unstemmed Multistrengthening Module-Based Salient Object Detection
title_sort multistrengthening module-based salient object detection
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/d86a278775074e87af483b437ae24ccd
work_keys_str_mv AT qianzhao multistrengtheningmodulebasedsalientobjectdetection
AT haifengwang multistrengtheningmodulebasedsalientobjectdetection
AT junpengdang multistrengtheningmodulebasedsalientobjectdetection
AT songlinli multistrengtheningmodulebasedsalientobjectdetection
AT rongchang multistrengtheningmodulebasedsalientobjectdetection
AT yanbinfang multistrengtheningmodulebasedsalientobjectdetection
AT zhizhang multistrengtheningmodulebasedsalientobjectdetection
AT jiepeng multistrengtheningmodulebasedsalientobjectdetection
AT yangyang multistrengtheningmodulebasedsalientobjectdetection
_version_ 1718428952342560768