Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning
The traditional power quality disturbances classification methods include three stages, i.e., feature extraction, feature selection, classifier training. These methods suffer from low accuracy and a limited improvement margin. Since deep learning can greatly improve the accuracy of classification, a...
Guardado en:
Autores principales: | Xiangui Xiao, Kaicheng Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8775a8e800140b0b425564cadf68c0b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images
por: Yasmin M. Kassim, et al.
Publicado: (2021) -
Bangladeshi Native Vehicle Classification Based on Transfer Learning with Deep Convolutional Neural Network
por: Md Mahibul Hasan, et al.
Publicado: (2021) -
A Deep Neural Network Based on ResNet for Predicting Solutions of Poisson–Boltzmann Equation
por: In Kwon, et al.
Publicado: (2021) -
The Storage Period Discrimination of Bolete Mushrooms Based on Deep Learning Methods Combined With Two-Dimensional Correlation Spectroscopy and Integrative Two-Dimensional Correlation Spectroscopy
por: Jian-E Dong, et al.
Publicado: (2021) -
Automatic Interferogram Selection for SBAS-InSAR Based on Deep Convolutional Neural Networks
por: Yufang He, et al.
Publicado: (2021)