Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning
The traditional power quality disturbances classification methods include three stages, i.e., feature extraction, feature selection, classifier training. These methods suffer from low accuracy and a limited improvement margin. Since deep learning can greatly improve the accuracy of classification, a...
Enregistré dans:
Auteurs principaux: | Xiangui Xiao, Kaicheng Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d8775a8e800140b0b425564cadf68c0b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images
par: Yasmin M. Kassim, et autres
Publié: (2021) -
Bangladeshi Native Vehicle Classification Based on Transfer Learning with Deep Convolutional Neural Network
par: Md Mahibul Hasan, et autres
Publié: (2021) -
A Deep Neural Network Based on ResNet for Predicting Solutions of Poisson–Boltzmann Equation
par: In Kwon, et autres
Publié: (2021) -
The Storage Period Discrimination of Bolete Mushrooms Based on Deep Learning Methods Combined With Two-Dimensional Correlation Spectroscopy and Integrative Two-Dimensional Correlation Spectroscopy
par: Jian-E Dong, et autres
Publié: (2021) -
Automatic Interferogram Selection for SBAS-InSAR Based on Deep Convolutional Neural Networks
par: Yufang He, et autres
Publié: (2021)