Analysis of phase noise effects in a coupled Mach–Zehnder interferometer for a much stabilized free-space optical link

Abstract Recently, new physics for unconditional security in a classical key distribution (USCKD) has been proposed and demonstrated in a frame of a double Mach–Zehnder interferometer (MZI) as a proof of principle, where the unconditional security is rooted in MZI channel superposition. Due to envir...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Byoung S. Ham
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d87fa4f25cc7448c998f21beee88cbdd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Recently, new physics for unconditional security in a classical key distribution (USCKD) has been proposed and demonstrated in a frame of a double Mach–Zehnder interferometer (MZI) as a proof of principle, where the unconditional security is rooted in MZI channel superposition. Due to environmental phase noise caused by temperature variations, atmospheric turbulences, and mechanical vibrations, free-space optical links have been severely challenged for both classical and quantum communications. Here, the double MZI scheme of USCKD is analyzed for greatly subdued environment-caused phase noise via double unitary transformation, resulting in potential applications of free-space optical links, where the free-space optical link has been a major research area from fundamental physics of atomic clock and quantum key distribution to potential applications of geodesy, navigation, and MIMO technologies in mobile communications systems.