Analysis of phase noise effects in a coupled Mach–Zehnder interferometer for a much stabilized free-space optical link
Abstract Recently, new physics for unconditional security in a classical key distribution (USCKD) has been proposed and demonstrated in a frame of a double Mach–Zehnder interferometer (MZI) as a proof of principle, where the unconditional security is rooted in MZI channel superposition. Due to envir...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d87fa4f25cc7448c998f21beee88cbdd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Recently, new physics for unconditional security in a classical key distribution (USCKD) has been proposed and demonstrated in a frame of a double Mach–Zehnder interferometer (MZI) as a proof of principle, where the unconditional security is rooted in MZI channel superposition. Due to environmental phase noise caused by temperature variations, atmospheric turbulences, and mechanical vibrations, free-space optical links have been severely challenged for both classical and quantum communications. Here, the double MZI scheme of USCKD is analyzed for greatly subdued environment-caused phase noise via double unitary transformation, resulting in potential applications of free-space optical links, where the free-space optical link has been a major research area from fundamental physics of atomic clock and quantum key distribution to potential applications of geodesy, navigation, and MIMO technologies in mobile communications systems. |
---|