Microfluidic devices manufacturing combining stereolithography and pulsed laser ablation
3D printing has revolutionized the field of microfluidics manufacturing by simplifying the typical processes offering a considerable accuracy and user-friendly procedures. For its part, laser ablation proves to be a versatile technology to perform detailed surface micropatterning. A hybrid technique...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d884d2a6b697498f8f9d2aa56175e771 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | 3D printing has revolutionized the field of microfluidics manufacturing by simplifying the typical processes offering a considerable accuracy and user-friendly procedures. For its part, laser ablation proves to be a versatile technology to perform detailed surface micropatterning. A hybrid technique that combines both technologies is proposed, employing them in their most suitable range of dimensions. This technique allows to manufacture accurate microfluidics devices as the one proposed: a microchannel, obtained using a stereolithographic printer, coupled with an array of microlenses, obtained by pulsed laser ablation of a 3D printed master. |
---|