Machine learning dismantling and early-warning signals of disintegration in complex systems
Network dismantling allows to find minimum set of units attacking which leads to system’s break down. Grassia et al. propose a deep-learning framework for dismantling of large networks which can be used to quantify the vulnerability of networks and detect early-warning signals of their collapse.
Enregistré dans:
Auteurs principaux: | Marco Grassia, Manlio De Domenico, Giuseppe Mangioni |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d88cb98dfb5a4142bb8c845ae4d9a08b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Early warning signals of recovery in complex systems
par: Christopher F. Clements, et autres
Publié: (2019) -
Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
par: Yue Gao, et autres
Publié: (2020) -
Fiscal capitalism and the dismantling of citizenship : Puno-Peru in the Nineteenth Century /
par: Hunefeldt, Christine
Publié: (2018) -
Construction of Strategic Early-Warning System in Cyberspace
par: Zhuang Honglin, Yao Le, Wang Sheng, Gu Jiaxiang, Wu Ye, Xie Kai
Publié: (2021) -
Experimental Stand for Sorting Components Dismantled from Printed Circuit Boards
par: Laszlo Rapolti, et autres
Publié: (2021)