Importance of Spatial Autocorrelation in Machine Learning Modeling of Polymetallic Nodules, Model Uncertainty and Transferability at Local Scale
Machine learning spatial modeling is used for mapping the distribution of deep-sea polymetallic nodules (PMN). However, the presence and influence of spatial autocorrelation (SAC) have not been extensively studied. SAC can provide information regarding the variable selection before modeling, and it...
Guardado en:
Autores principales: | Iason-Zois Gazis, Jens Greinert |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d897a978d4944298a824bf333972f4a3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ellinaite, CaCr<sub>2</sub>O<sub>4</sub>, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil
por: V. V. Sharygin, et al.
Publicado: (2021) -
New data on gersdorffite and associated minerals from the Peloritani Mountains (Sicily, Italy)
por: D. Mauro, et al.
Publicado: (2021) -
Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites
por: L. Shumlyanskyy, et al.
Publicado: (2021) -
Characterization and origin of the Mn-rich patinas formed on Lunéville château sandstones
por: L. Gatuingt, et al.
Publicado: (2021) -
New insights in the mechanisms of the reaction 3.65 Å phase = clinoenstatite + water down to nanoscales
por: M. Koch-Müller, et al.
Publicado: (2021)