A Joint Channel Allocation and Power Control Scheme for D2D Communication in UAV-Based Networks

With the increasing application of unmanned aerial vehicles (UAVs), UAV-based base stations (BSs) have been widely used. In some situations when there is no ground BSs, such as mountainous areas and isolated islands, or BSs being out of service, like disaster areas, UAV-based networks may be rapidly...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Enchang Sun, Hanxing Qu, Yongyi Yuan, Meng Li, Zhuwei Wang, Dawei Chen
Formato: article
Lenguaje:EN
Publicado: Hindawi-Wiley 2021
Materias:
T
Acceso en línea:https://doaj.org/article/d89832f891a04268b9263b67e89b8562
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:With the increasing application of unmanned aerial vehicles (UAVs), UAV-based base stations (BSs) have been widely used. In some situations when there is no ground BSs, such as mountainous areas and isolated islands, or BSs being out of service, like disaster areas, UAV-based networks may be rapidly deployed. In this paper, we propose a framework for UAV deployment, power control, and channel allocation for device-to-device (D2D) users, which is used for the underlying D2D communication in UAV-based networks. Firstly, the number and location of UAVs are iteratively optimized by the particle swarm optimization- (PSO-) Kmeans algorithm. After UAV deployment, this study maximizes the energy efficiency (EE) of D2D pairs while ensuring the quality of service (QoS). To solve this optimization problem, the adaptive mutation salp swarm algorithm (AMSSA) is proposed, which adopts the population variation strategy, the dynamic leader-follower numbers, and position update, as well as Q-learning strategy. Finally, simulation results show that the PSO-Kmeans algorithm can achieve better communication quality of cellular users (CUEs) with fewer UAVs compared with the PSO algorithm. The AMSSA has excellent global searching ability and local mining ability, which is not only superior to other benchmark schemes but also closer to the optimal performance of D2D pairs in terms of EE.