Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks
Deep learning (DL) algorithms have become an increasingly popular choice for image classification and segmentation tasks; however, their range of applications can be limited. Their limitation stems from them requiring ample data to achieve high performance and adequate generalizability. In the case...
Guardado en:
Autores principales: | Justin Lo, Jillian Cardinell, Alejo Costanzo, Dafna Sussman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8994bac72004a1f803e410c437872f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning-Augmented Head and Neck Organs at Risk Segmentation From CT Volumes
por: Wei Wang, et al.
Publicado: (2021) -
A Deep Learning Approach with Data Augmentation to Predict Novel Spider Neurotoxic Peptides
por: Byungjo Lee, et al.
Publicado: (2021) -
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
por: Bekhzod Olimov, et al.
Publicado: (2021) -
A Data Augmentation Method for War Trauma Using the War Trauma Severity Score and Deep Neural Networks
por: Jibin Yin, et al.
Publicado: (2021) -
Small facial image dataset augmentation using conditional GANs based on incomplete edge feature input
por: Shih-Kai Hung, et al.
Publicado: (2021)