Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo

LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Frank Hanssen, David N. Barton, Zander S. Venter, Megan S. Nowell, Zofie Cimburova
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/d89a0bb9c2d6411cb79a19148614d158
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d89a0bb9c2d6411cb79a19148614d158
record_format dspace
spelling oai:doaj.org-article:d89a0bb9c2d6411cb79a19148614d1582021-12-01T04:57:51ZUtilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo1470-160X10.1016/j.ecolind.2021.108007https://doaj.org/article/d89a0bb9c2d6411cb79a19148614d1582021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X21006725https://doaj.org/toc/1470-160XLiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuation. However, using available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem service accounting in urban environments, we recommend that municipalities implement data acquisition programs that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done within a cloud-computing environment to ensure sufficient geoprocessing capacity.Frank HanssenDavid N. BartonZander S. VenterMegan S. NowellZofie CimburovaElsevierarticleLight Detection And Ranging (LiDAR)Geographical Information Systems (GIS)Remote sensingEcosystem accountingEcosystem servicesTree canopy segmentationEcologyQH540-549.5ENEcological Indicators, Vol 130, Iss , Pp 108007- (2021)
institution DOAJ
collection DOAJ
language EN
topic Light Detection And Ranging (LiDAR)
Geographical Information Systems (GIS)
Remote sensing
Ecosystem accounting
Ecosystem services
Tree canopy segmentation
Ecology
QH540-549.5
spellingShingle Light Detection And Ranging (LiDAR)
Geographical Information Systems (GIS)
Remote sensing
Ecosystem accounting
Ecosystem services
Tree canopy segmentation
Ecology
QH540-549.5
Frank Hanssen
David N. Barton
Zander S. Venter
Megan S. Nowell
Zofie Cimburova
Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo
description LiDAR-based segmentation of urban tree canopies and their physical properties (canopy height, canopy diameter, 3D surface and volume) is a replicable, complementary and useful information source for urban ecosystem condition accounts, and an important basis for ecosystem service modeling and valuation. However, using available LiDAR data collected for municipal purposes other than vegetation mapping (such as for example engineering) entails a level of accuracy which may limit the usefulness of the data for change detection in ecosystem accounts. To account for changes in the urban tree canopy of Oslo (capital city of Norway) between 2011 and 2017, a segmentation model was developed based on available airborne LiDAR data scanned for general purposes. The results from the entire built-up area of Oslo indicate a general increase in the number of tall trees (>15 m) and a moderate increase in the number of small trees (<15 m), with the exception of trees between 6 and 10 m which seem to have a relatively constant development over the given period. The total tree canopy area within the built-up area increased by 17.15%, with a corresponding 21.35% increase in the tree canopy volume. The results for the Small House plan area, a policy focus area subject to urban densification and special regulations for felling of large trees, indicate a large increase in small trees (<10 m) and a moderate decrease in tall trees (>10 m). The total tree canopy area within the Small House plan area decreased by 1.04%, with a corresponding 2.13% decrease in the tree canopy volume. With respect to the segmentation accuracy, the changes in aggregate tree canopy cover are too small to determine canopy change with confidence. This study demonstrates the potential for identifying ecosystem condition indicators as well as the limitations of using general purpose LiDAR data to improve the precision of urban ecosystem accounting. For future ecosystem service accounting in urban environments, we recommend that municipalities implement data acquisition programs that combine concurrent field data sampling and LiDAR campaigns designed for urban tree canopy detection, as part of general urban structural inventorying. We recommend using LiDAR and satellite remote sensing data depending on canopy densities. We also recommend that future tree canopy segmentation is done within a cloud-computing environment to ensure sufficient geoprocessing capacity.
format article
author Frank Hanssen
David N. Barton
Zander S. Venter
Megan S. Nowell
Zofie Cimburova
author_facet Frank Hanssen
David N. Barton
Zander S. Venter
Megan S. Nowell
Zofie Cimburova
author_sort Frank Hanssen
title Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo
title_short Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo
title_full Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo
title_fullStr Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo
title_full_unstemmed Utilizing LiDAR data to map tree canopy for urban ecosystem extent and condition accounts in Oslo
title_sort utilizing lidar data to map tree canopy for urban ecosystem extent and condition accounts in oslo
publisher Elsevier
publishDate 2021
url https://doaj.org/article/d89a0bb9c2d6411cb79a19148614d158
work_keys_str_mv AT frankhanssen utilizinglidardatatomaptreecanopyforurbanecosystemextentandconditionaccountsinoslo
AT davidnbarton utilizinglidardatatomaptreecanopyforurbanecosystemextentandconditionaccountsinoslo
AT zandersventer utilizinglidardatatomaptreecanopyforurbanecosystemextentandconditionaccountsinoslo
AT megansnowell utilizinglidardatatomaptreecanopyforurbanecosystemextentandconditionaccountsinoslo
AT zofiecimburova utilizinglidardatatomaptreecanopyforurbanecosystemextentandconditionaccountsinoslo
_version_ 1718405694369038336