Single-cell RNA sequencing reveals a strong connection between Gadd45g upregulation and oncolytic HSV infection in tumor tissue
The oncolytic effect of virotherapy derives from the intrinsic capability of the applied virus in selectively infecting and killing tumor cells. Although oncolytic viruses of various constructions have been shown to efficiently infect and kill tumor cells in vitro, the efficiency of these viruses to...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d89ca230dd9b4cafa2321e204819ba46 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The oncolytic effect of virotherapy derives from the intrinsic capability of the applied virus in selectively infecting and killing tumor cells. Although oncolytic viruses of various constructions have been shown to efficiently infect and kill tumor cells in vitro, the efficiency of these viruses to exert the same effect on tumor cells within tumor tissues in vivo has not been extensively investigated. Here we report our studies using single-cell RNA sequencing to comprehensively analyze the gene expression profile of tumor tissues following herpes simplex virus 2-based oncolytic virotherapy. Our data revealed the extent and cell types within the tumor microenvironment that could be infected by the virus. Moreover, we observed changes in the expression of cellular genes, including antiviral genes, in response to viral infection. One notable gene found to be upregulated significantly in oncolytic virus-infected tumor cells was Gadd45g, which is desirable for optimal virus replication. These results not only help reveal the precise infection status of the oncolytic virus in vivo but also provide insight that may lead to the development of new strategies to further enhance the therapeutic efficacy of oncolytic virotherapy. |
---|