Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies
Abstract Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources ex...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8b051a5b24d4dfdbcda81c427f372e7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d8b051a5b24d4dfdbcda81c427f372e7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d8b051a5b24d4dfdbcda81c427f372e72021-12-02T11:53:03ZTransverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies10.1038/s41598-017-05789-w2045-2322https://doaj.org/article/d8b051a5b24d4dfdbcda81c427f372e72017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05789-whttps://doaj.org/toc/2045-2322Abstract Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.M. ZürchR. JungC. SpäthJ. TümmlerA. GuggenmosD. AttwoodU. KleinebergH. StielC. SpielmannNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q M. Zürch R. Jung C. Späth J. Tümmler A. Guggenmos D. Attwood U. Kleineberg H. Stiel C. Spielmann Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies |
description |
Abstract Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs. |
format |
article |
author |
M. Zürch R. Jung C. Späth J. Tümmler A. Guggenmos D. Attwood U. Kleineberg H. Stiel C. Spielmann |
author_facet |
M. Zürch R. Jung C. Späth J. Tümmler A. Guggenmos D. Attwood U. Kleineberg H. Stiel C. Spielmann |
author_sort |
M. Zürch |
title |
Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies |
title_short |
Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies |
title_full |
Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies |
title_fullStr |
Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies |
title_full_unstemmed |
Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies |
title_sort |
transverse coherence limited coherent diffraction imaging using a molybdenum soft x-ray laser pumped at moderate pump energies |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/d8b051a5b24d4dfdbcda81c427f372e7 |
work_keys_str_mv |
AT mzurch transversecoherencelimitedcoherentdiffractionimagingusingamolybdenumsoftxraylaserpumpedatmoderatepumpenergies AT rjung transversecoherencelimitedcoherentdiffractionimagingusingamolybdenumsoftxraylaserpumpedatmoderatepumpenergies AT cspath transversecoherencelimitedcoherentdiffractionimagingusingamolybdenumsoftxraylaserpumpedatmoderatepumpenergies AT jtummler transversecoherencelimitedcoherentdiffractionimagingusingamolybdenumsoftxraylaserpumpedatmoderatepumpenergies AT aguggenmos transversecoherencelimitedcoherentdiffractionimagingusingamolybdenumsoftxraylaserpumpedatmoderatepumpenergies AT dattwood transversecoherencelimitedcoherentdiffractionimagingusingamolybdenumsoftxraylaserpumpedatmoderatepumpenergies AT ukleineberg transversecoherencelimitedcoherentdiffractionimagingusingamolybdenumsoftxraylaserpumpedatmoderatepumpenergies AT hstiel transversecoherencelimitedcoherentdiffractionimagingusingamolybdenumsoftxraylaserpumpedatmoderatepumpenergies AT cspielmann transversecoherencelimitedcoherentdiffractionimagingusingamolybdenumsoftxraylaserpumpedatmoderatepumpenergies |
_version_ |
1718394897408458752 |