Sequential transfer learning based on hierarchical clustering for improved performance in deep learning based food segmentation
Abstract Accurately segmenting foods from optical images is a challenging task, yet becoming possible with the help of recent advances in Deep Learning based solutions. Automated identification of food items opens up possibilities of useful applications like nutrition intake monitoring. Given large...
Guardado en:
Autores principales: | Mia S. N. Siemon, A. S. M. Shihavuddin, Gitte Ravn-Haren |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8ba52c9b7714b63971be8b054b8cae2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images
por: Guangzhou An, et al.
Publicado: (2021) -
Design of lung nodules segmentation and recognition algorithm based on deep learning
por: Hui Yu, et al.
Publicado: (2021) -
Deep Learning-Based Instance Segmentation for Indoor Fire Load Recognition
por: Yu-Cheng Zhou, et al.
Publicado: (2021) -
Visual tracking based on transfer learning of deep salience information
por: Zuo Haorui, et al.
Publicado: (2020) -
A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis
por: Yongli Xu, et al.
Publicado: (2021)