Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions
Abstract Patients with pneumonia and parapneumonic effusion (PPE) have elevated mortality and a poor prognosis. The aim of this study was to discover novel biomarkers to help distinguish between uncomplicated PPE (UPPE) and complicated PPE (CPPE). Using an iTRAQ-based quantitative proteomics, we ide...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8c60a099bf64523874e7cc8dc2a09db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d8c60a099bf64523874e7cc8dc2a09db |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d8c60a099bf64523874e7cc8dc2a09db2021-12-02T16:06:04ZProteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions10.1038/s41598-017-04189-42045-2322https://doaj.org/article/d8c60a099bf64523874e7cc8dc2a09db2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04189-4https://doaj.org/toc/2045-2322Abstract Patients with pneumonia and parapneumonic effusion (PPE) have elevated mortality and a poor prognosis. The aim of this study was to discover novel biomarkers to help distinguish between uncomplicated PPE (UPPE) and complicated PPE (CPPE). Using an iTRAQ-based quantitative proteomics, we identified 766 proteins in pleural effusions from PPE patients. In total, 45 of these proteins were quantified as upregulated proteins in CPPE. Four novel upregulated candidates (BPI, NGAL, AZU1, and calprotectin) were selected and further verified using enzyme-linked immunosorbent assays (ELISAs) on 220 patients with pleural effusions due to different causes. The pleural fluid levels of BPI, NGAL, AZU1, and calprotectin were significantly elevated in patients with CPPE. Among these four biomarkers, BPI had the best diagnostic value for CPPE, with an AUC value of 0.966, a sensitivity of 97%, and a specificity of 91.4%. A logistic regression analysis demonstrated a strong association between BPI levels > 10 ng/ml and CPPE (odds ratio = 341.3). Furthermore, the combination of pleural fluid BPI levels with LDH levels improved the sensitivity and specificity to 100% and 91.4%, respectively. Thus, our findings provided a comprehensive effusion proteome data set for PPE biomarker discovery and revealed novel biomarkers for the diagnosis of CPPE.Kuo-An WuChih-Ching WuChi-De ChenChi-Ming ChuLi-Jane ShihYu-Ching LiuChih-Liang WangHsi-Hsien LinChia-Yu YangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Kuo-An Wu Chih-Ching Wu Chi-De Chen Chi-Ming Chu Li-Jane Shih Yu-Ching Liu Chih-Liang Wang Hsi-Hsien Lin Chia-Yu Yang Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions |
description |
Abstract Patients with pneumonia and parapneumonic effusion (PPE) have elevated mortality and a poor prognosis. The aim of this study was to discover novel biomarkers to help distinguish between uncomplicated PPE (UPPE) and complicated PPE (CPPE). Using an iTRAQ-based quantitative proteomics, we identified 766 proteins in pleural effusions from PPE patients. In total, 45 of these proteins were quantified as upregulated proteins in CPPE. Four novel upregulated candidates (BPI, NGAL, AZU1, and calprotectin) were selected and further verified using enzyme-linked immunosorbent assays (ELISAs) on 220 patients with pleural effusions due to different causes. The pleural fluid levels of BPI, NGAL, AZU1, and calprotectin were significantly elevated in patients with CPPE. Among these four biomarkers, BPI had the best diagnostic value for CPPE, with an AUC value of 0.966, a sensitivity of 97%, and a specificity of 91.4%. A logistic regression analysis demonstrated a strong association between BPI levels > 10 ng/ml and CPPE (odds ratio = 341.3). Furthermore, the combination of pleural fluid BPI levels with LDH levels improved the sensitivity and specificity to 100% and 91.4%, respectively. Thus, our findings provided a comprehensive effusion proteome data set for PPE biomarker discovery and revealed novel biomarkers for the diagnosis of CPPE. |
format |
article |
author |
Kuo-An Wu Chih-Ching Wu Chi-De Chen Chi-Ming Chu Li-Jane Shih Yu-Ching Liu Chih-Liang Wang Hsi-Hsien Lin Chia-Yu Yang |
author_facet |
Kuo-An Wu Chih-Ching Wu Chi-De Chen Chi-Ming Chu Li-Jane Shih Yu-Ching Liu Chih-Liang Wang Hsi-Hsien Lin Chia-Yu Yang |
author_sort |
Kuo-An Wu |
title |
Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions |
title_short |
Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions |
title_full |
Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions |
title_fullStr |
Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions |
title_full_unstemmed |
Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions |
title_sort |
proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/d8c60a099bf64523874e7cc8dc2a09db |
work_keys_str_mv |
AT kuoanwu proteomeprofilingrevealsnovelbiomarkerstoidentifycomplicatedparapneumoniceffusions AT chihchingwu proteomeprofilingrevealsnovelbiomarkerstoidentifycomplicatedparapneumoniceffusions AT chidechen proteomeprofilingrevealsnovelbiomarkerstoidentifycomplicatedparapneumoniceffusions AT chimingchu proteomeprofilingrevealsnovelbiomarkerstoidentifycomplicatedparapneumoniceffusions AT lijaneshih proteomeprofilingrevealsnovelbiomarkerstoidentifycomplicatedparapneumoniceffusions AT yuchingliu proteomeprofilingrevealsnovelbiomarkerstoidentifycomplicatedparapneumoniceffusions AT chihliangwang proteomeprofilingrevealsnovelbiomarkerstoidentifycomplicatedparapneumoniceffusions AT hsihsienlin proteomeprofilingrevealsnovelbiomarkerstoidentifycomplicatedparapneumoniceffusions AT chiayuyang proteomeprofilingrevealsnovelbiomarkerstoidentifycomplicatedparapneumoniceffusions |
_version_ |
1718385119143657472 |