Earthquake source characterization by machine learning algorithms applied to acoustic signals
Abstract Underwater seismic events generate acoustic radiation (such as acoustic-gravity waves), that carries information about the source and can travel long distances before dissipating. Effective early warning, emergency response, and information dissemination for earthquakes and tsunamis require...
Guardado en:
Autores principales: | Bernabe Gomez, Usama Kadri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8cd87fd4ff14799aee525815a78f39b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system
por: Takeshi Nishimura, et al.
Publicado: (2021) -
Machine learning and earthquake forecasting—next steps
por: Gregory C. Beroza, et al.
Publicado: (2021) -
Audible acoustics from low-magnitude fluid-induced earthquakes in Finland
por: Oliver D. Lamb, et al.
Publicado: (2021) -
Characterizing and forecasting the responses of tropical forest leaf phenology to El Nino by machine learning algorithms.
por: Taninnuch Lamjiak, et al.
Publicado: (2021) -
ECG-based machine-learning algorithms for heartbeat classification
por: Saira Aziz, et al.
Publicado: (2021)