Identifying subspace gene clusters from microarray data using low-rank representation.
Identifying subspace gene clusters from the gene expression data is useful for discovering novel functional gene interactions. In this paper, we propose to use low-rank representation (LRR) to identify the subspace gene clusters from microarray data. LRR seeks the lowest-rank representation among al...
Guardado en:
Autores principales: | Yan Cui, Chun-Hou Zheng, Jian Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8dc02d66f4a411f8de1c2282c962c8b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi‐view intrinsic low‐rank representation for robust face recognition and clustering
por: Zhi‐yang Wang, et al.
Publicado: (2021) -
SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement
por: Zhenlan Liang, et al.
Publicado: (2021) -
Face recognition using sparse representation-based classification on k-nearest subspace.
por: Jian-Xun Mi, et al.
Publicado: (2013) -
Low rank representations for quantum simulation of electronic structure
por: Mario Motta, et al.
Publicado: (2021) -
Hamiltonian simulation in the low-energy subspace
por: Burak Şahinoğlu, et al.
Publicado: (2021)