DeepEMhancer: a deep learning solution for cryo-EM volume post-processing

Sanchez-Garcia et al. present DeepEMhancer, a deep learning-based method that can automatically perform post-processing of raw cryo-electron microscopy density maps. The authors report that DeepEMhancer globally improves local quality of density maps, and may represent a useful tool for novel struct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ruben Sanchez-Garcia, Josue Gomez-Blanco, Ana Cuervo, Jose Maria Carazo, Carlos Oscar S. Sorzano, Javier Vargas
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/d8dd5236e640466ead393144dcbe902e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d8dd5236e640466ead393144dcbe902e
record_format dspace
spelling oai:doaj.org-article:d8dd5236e640466ead393144dcbe902e2021-12-02T15:33:09ZDeepEMhancer: a deep learning solution for cryo-EM volume post-processing10.1038/s42003-021-02399-12399-3642https://doaj.org/article/d8dd5236e640466ead393144dcbe902e2021-07-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02399-1https://doaj.org/toc/2399-3642Sanchez-Garcia et al. present DeepEMhancer, a deep learning-based method that can automatically perform post-processing of raw cryo-electron microscopy density maps. The authors report that DeepEMhancer globally improves local quality of density maps, and may represent a useful tool for novel structures where PDB models are not readily available.Ruben Sanchez-GarciaJosue Gomez-BlancoAna CuervoJose Maria CarazoCarlos Oscar S. SorzanoJavier VargasNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Ruben Sanchez-Garcia
Josue Gomez-Blanco
Ana Cuervo
Jose Maria Carazo
Carlos Oscar S. Sorzano
Javier Vargas
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing
description Sanchez-Garcia et al. present DeepEMhancer, a deep learning-based method that can automatically perform post-processing of raw cryo-electron microscopy density maps. The authors report that DeepEMhancer globally improves local quality of density maps, and may represent a useful tool for novel structures where PDB models are not readily available.
format article
author Ruben Sanchez-Garcia
Josue Gomez-Blanco
Ana Cuervo
Jose Maria Carazo
Carlos Oscar S. Sorzano
Javier Vargas
author_facet Ruben Sanchez-Garcia
Josue Gomez-Blanco
Ana Cuervo
Jose Maria Carazo
Carlos Oscar S. Sorzano
Javier Vargas
author_sort Ruben Sanchez-Garcia
title DeepEMhancer: a deep learning solution for cryo-EM volume post-processing
title_short DeepEMhancer: a deep learning solution for cryo-EM volume post-processing
title_full DeepEMhancer: a deep learning solution for cryo-EM volume post-processing
title_fullStr DeepEMhancer: a deep learning solution for cryo-EM volume post-processing
title_full_unstemmed DeepEMhancer: a deep learning solution for cryo-EM volume post-processing
title_sort deepemhancer: a deep learning solution for cryo-em volume post-processing
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d8dd5236e640466ead393144dcbe902e
work_keys_str_mv AT rubensanchezgarcia deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing
AT josuegomezblanco deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing
AT anacuervo deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing
AT josemariacarazo deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing
AT carlososcarssorzano deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing
AT javiervargas deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing
_version_ 1718387112900820992