DeepEMhancer: a deep learning solution for cryo-EM volume post-processing
Sanchez-Garcia et al. present DeepEMhancer, a deep learning-based method that can automatically perform post-processing of raw cryo-electron microscopy density maps. The authors report that DeepEMhancer globally improves local quality of density maps, and may represent a useful tool for novel struct...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8dd5236e640466ead393144dcbe902e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d8dd5236e640466ead393144dcbe902e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d8dd5236e640466ead393144dcbe902e2021-12-02T15:33:09ZDeepEMhancer: a deep learning solution for cryo-EM volume post-processing10.1038/s42003-021-02399-12399-3642https://doaj.org/article/d8dd5236e640466ead393144dcbe902e2021-07-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02399-1https://doaj.org/toc/2399-3642Sanchez-Garcia et al. present DeepEMhancer, a deep learning-based method that can automatically perform post-processing of raw cryo-electron microscopy density maps. The authors report that DeepEMhancer globally improves local quality of density maps, and may represent a useful tool for novel structures where PDB models are not readily available.Ruben Sanchez-GarciaJosue Gomez-BlancoAna CuervoJose Maria CarazoCarlos Oscar S. SorzanoJavier VargasNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Ruben Sanchez-Garcia Josue Gomez-Blanco Ana Cuervo Jose Maria Carazo Carlos Oscar S. Sorzano Javier Vargas DeepEMhancer: a deep learning solution for cryo-EM volume post-processing |
description |
Sanchez-Garcia et al. present DeepEMhancer, a deep learning-based method that can automatically perform post-processing of raw cryo-electron microscopy density maps. The authors report that DeepEMhancer globally improves local quality of density maps, and may represent a useful tool for novel structures where PDB models are not readily available. |
format |
article |
author |
Ruben Sanchez-Garcia Josue Gomez-Blanco Ana Cuervo Jose Maria Carazo Carlos Oscar S. Sorzano Javier Vargas |
author_facet |
Ruben Sanchez-Garcia Josue Gomez-Blanco Ana Cuervo Jose Maria Carazo Carlos Oscar S. Sorzano Javier Vargas |
author_sort |
Ruben Sanchez-Garcia |
title |
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing |
title_short |
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing |
title_full |
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing |
title_fullStr |
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing |
title_full_unstemmed |
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing |
title_sort |
deepemhancer: a deep learning solution for cryo-em volume post-processing |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/d8dd5236e640466ead393144dcbe902e |
work_keys_str_mv |
AT rubensanchezgarcia deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing AT josuegomezblanco deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing AT anacuervo deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing AT josemariacarazo deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing AT carlososcarssorzano deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing AT javiervargas deepemhanceradeeplearningsolutionforcryoemvolumepostprocessing |
_version_ |
1718387112900820992 |