DeepEMhancer: a deep learning solution for cryo-EM volume post-processing
Sanchez-Garcia et al. present DeepEMhancer, a deep learning-based method that can automatically perform post-processing of raw cryo-electron microscopy density maps. The authors report that DeepEMhancer globally improves local quality of density maps, and may represent a useful tool for novel struct...
Guardado en:
Autores principales: | Ruben Sanchez-Garcia, Josue Gomez-Blanco, Ana Cuervo, Jose Maria Carazo, Carlos Oscar S. Sorzano, Javier Vargas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8dd5236e640466ead393144dcbe902e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Measuring local-directional resolution and local anisotropy in cryo-EM maps
por: Jose Luis Vilas, et al.
Publicado: (2020) -
Deep negative volume segmentation
por: Kristina Belikova, et al.
Publicado: (2021) -
Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ
por: Roman I Koning, et al.
Publicado: (2016) -
Detecting protein and DNA/RNA structures in cryo-EM maps of intermediate resolution using deep learning
por: Xiao Wang, et al.
Publicado: (2021) -
Quantitative analysis of metastatic breast cancer in mice using deep learning on cryo-image data
por: Yiqiao Liu, et al.
Publicado: (2021)