Study on resistance and intact stability behavior of patrol boat using axe bow hull form to support surveillance activities in the Indonesia territorial sea
As a sovereign maritime country, Indonesia has an obligation to protect, maintain, and manage marine and fishery resources. Patrol boats as the primary means of monitoring marine and fishery resources are needed in response to several problems and threats that may occur, such as illegal fishing, des...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Institut za istrazivanja i projektovanja u privredi
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d8eda417861b41128c0dd6ebefe587c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | As a sovereign maritime country, Indonesia has an obligation to protect, maintain, and manage marine and fishery resources. Patrol boats as the primary means of monitoring marine and fishery resources are needed in response to several problems and threats that may occur, such as illegal fishing, destructive fishing, violations of zoning in fisheries conservation areas and others. Apart from having to be adequate on the number of units, the patrol boats must also have suitable technology to support pursuit operations and suppress violations. The main objective of this research is to investigate the total resistance and intact stability behavior of the developed axe bow hull geometry for the patrol boat hull. The preliminary design is started with the determination of the principal dimension of the patrol boat. Then the hull geometry configurations were made with the variation of the depth of bow and the water line spline type. In the case of the depth of bow, the bow with the additional depth of 30%, 40% and 50% of the draft was investigated. Otherwise, the water line spline type was configured as convex spline, concave spline and straight spline. According to the numerical analysis, the axe bow hull with the depth of bow of 30% and the straight spline type was presented the smallest total resistance performance. However, in the case of intact stability performance, all developed axe bow hull presented a similar righting moment lever arm (GZ curve). It is indicated that the total resistance of the axe bow hull is influenced by the depth of bow and water line spline type. Furthermore, those variables have a slight influence on intact stability performance. |
---|