Acoustoelectric current in graphene nanoribbon due to Landau damping

Abstract We perform self-consistent analysis of the Boltzmann transport equation for momentum and energy in the hypersound regime i.e., $$ql \gg 1$$ q l ≫ 1 ( $$q$$ q is the acoustic wavenumber and l is the mean free path). We investigate the Landau damping of acoustic phonons ( $$LDOAP$$ LDOAP ) in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: K. A. Dompreh, K. W. Adu, D. Sakyi-Arthur, N. G. Mensah, S. Y. Mensah, A. Twum, M. Amekpewu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d8f2553419dd4f698844620cc6172340
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d8f2553419dd4f698844620cc6172340
record_format dspace
spelling oai:doaj.org-article:d8f2553419dd4f698844620cc61723402021-12-02T14:58:48ZAcoustoelectric current in graphene nanoribbon due to Landau damping10.1038/s41598-021-95896-62045-2322https://doaj.org/article/d8f2553419dd4f698844620cc61723402021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95896-6https://doaj.org/toc/2045-2322Abstract We perform self-consistent analysis of the Boltzmann transport equation for momentum and energy in the hypersound regime i.e., $$ql \gg 1$$ q l ≫ 1 ( $$q$$ q is the acoustic wavenumber and l is the mean free path). We investigate the Landau damping of acoustic phonons ( $$LDOAP$$ LDOAP ) in graphene nanoribbons, which leads to acoustoelectric current generation. Under a non-quantized field with drift velocity, we observed an acoustic phonon energy quantization that depends on the energy gap, the width, and the sub-index of the material. An effect similar to Cerenkov emission was observed, where the electron absorbed the confined acoustic phonon energy, causing the generation of acoustoelectric current in the graphene nanoribbon. A qualitative analysis of the dependence of the absorption coefficient and the acoustoelectric current on the phonon frequency is in agreement with experimental reports. We observed a shift in the peaks when the energy gap and the drift velocity were varied. Most importantly, a transparency window appears when the absorption coefficient is zero, making graphene nanoribbons a potential candidate for use as an acoustic wave filter with applications in tunable gate-controlled quantum information devices and phonon spectrometers.K. A. DomprehK. W. AduD. Sakyi-ArthurN. G. MensahS. Y. MensahA. TwumM. AmekpewuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
K. A. Dompreh
K. W. Adu
D. Sakyi-Arthur
N. G. Mensah
S. Y. Mensah
A. Twum
M. Amekpewu
Acoustoelectric current in graphene nanoribbon due to Landau damping
description Abstract We perform self-consistent analysis of the Boltzmann transport equation for momentum and energy in the hypersound regime i.e., $$ql \gg 1$$ q l ≫ 1 ( $$q$$ q is the acoustic wavenumber and l is the mean free path). We investigate the Landau damping of acoustic phonons ( $$LDOAP$$ LDOAP ) in graphene nanoribbons, which leads to acoustoelectric current generation. Under a non-quantized field with drift velocity, we observed an acoustic phonon energy quantization that depends on the energy gap, the width, and the sub-index of the material. An effect similar to Cerenkov emission was observed, where the electron absorbed the confined acoustic phonon energy, causing the generation of acoustoelectric current in the graphene nanoribbon. A qualitative analysis of the dependence of the absorption coefficient and the acoustoelectric current on the phonon frequency is in agreement with experimental reports. We observed a shift in the peaks when the energy gap and the drift velocity were varied. Most importantly, a transparency window appears when the absorption coefficient is zero, making graphene nanoribbons a potential candidate for use as an acoustic wave filter with applications in tunable gate-controlled quantum information devices and phonon spectrometers.
format article
author K. A. Dompreh
K. W. Adu
D. Sakyi-Arthur
N. G. Mensah
S. Y. Mensah
A. Twum
M. Amekpewu
author_facet K. A. Dompreh
K. W. Adu
D. Sakyi-Arthur
N. G. Mensah
S. Y. Mensah
A. Twum
M. Amekpewu
author_sort K. A. Dompreh
title Acoustoelectric current in graphene nanoribbon due to Landau damping
title_short Acoustoelectric current in graphene nanoribbon due to Landau damping
title_full Acoustoelectric current in graphene nanoribbon due to Landau damping
title_fullStr Acoustoelectric current in graphene nanoribbon due to Landau damping
title_full_unstemmed Acoustoelectric current in graphene nanoribbon due to Landau damping
title_sort acoustoelectric current in graphene nanoribbon due to landau damping
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d8f2553419dd4f698844620cc6172340
work_keys_str_mv AT kadompreh acoustoelectriccurrentingraphenenanoribbonduetolandaudamping
AT kwadu acoustoelectriccurrentingraphenenanoribbonduetolandaudamping
AT dsakyiarthur acoustoelectriccurrentingraphenenanoribbonduetolandaudamping
AT ngmensah acoustoelectriccurrentingraphenenanoribbonduetolandaudamping
AT symensah acoustoelectriccurrentingraphenenanoribbonduetolandaudamping
AT atwum acoustoelectriccurrentingraphenenanoribbonduetolandaudamping
AT mamekpewu acoustoelectriccurrentingraphenenanoribbonduetolandaudamping
_version_ 1718389293935755264