The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation

Previous studies on the synchronization behaviors of neuronal networks were constructed by integer-order neuronal models. In contrast, this paper proposes that the above topics of symmetrical neuronal networks are constructed by fractional-order Hindmarsh–Rose (HR) models under electromagnetic radia...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xin Yang, Guangjun Zhang, Xueren Li, Dong Wang
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/d913cacc96ad4ba0ba6979cb45ee4e1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Previous studies on the synchronization behaviors of neuronal networks were constructed by integer-order neuronal models. In contrast, this paper proposes that the above topics of symmetrical neuronal networks are constructed by fractional-order Hindmarsh–Rose (HR) models under electromagnetic radiation. They are then investigated numerically. From the research results, several novel phenomena and conclusions can be drawn. First, for the two symmetrical coupled neuronal models, the synchronization degree is influenced by the fractional-order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> and the feedback gain parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>. In addition, the fractional-order or the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> can induce the synchronization transitions of bursting synchronization, perfect synchronization and phase synchronization. For perfect synchronization, the synchronization transitions of chaotic synchronization and periodic synchronization induced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> or parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> are also observed. In particular, when the fractional-order is small, such as 0.6, the synchronization transitions are more complex. Then, for a symmetrical ring neuronal network under electromagnetic radiation, with the change in the memory-conductance parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> of the electromagnetic radiation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula>, compared with the fractional-order HR model’s ring neuronal network without electromagnetic radiation, the synchronization behaviors are more complex. According to the simulation results, the influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> can be summarized into three cases: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>></mo><mn>0.02</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>0.06</mn><mo><</mo><mi>β</mi><mo><</mo><mn>0.02</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo><</mo><mo>−</mo><mn>0.06</mn></mrow></semantics></math></inline-formula>. The influence rules and some interesting phenomena are investigated.