The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation
Previous studies on the synchronization behaviors of neuronal networks were constructed by integer-order neuronal models. In contrast, this paper proposes that the above topics of symmetrical neuronal networks are constructed by fractional-order Hindmarsh–Rose (HR) models under electromagnetic radia...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d913cacc96ad4ba0ba6979cb45ee4e1b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d913cacc96ad4ba0ba6979cb45ee4e1b |
---|---|
record_format |
dspace |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fractional-order neuronal model synchronization transition neuronal network electromagnetic radiation Mathematics QA1-939 |
spellingShingle |
fractional-order neuronal model synchronization transition neuronal network electromagnetic radiation Mathematics QA1-939 Xin Yang Guangjun Zhang Xueren Li Dong Wang The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation |
description |
Previous studies on the synchronization behaviors of neuronal networks were constructed by integer-order neuronal models. In contrast, this paper proposes that the above topics of symmetrical neuronal networks are constructed by fractional-order Hindmarsh–Rose (HR) models under electromagnetic radiation. They are then investigated numerically. From the research results, several novel phenomena and conclusions can be drawn. First, for the two symmetrical coupled neuronal models, the synchronization degree is influenced by the fractional-order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> and the feedback gain parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>. In addition, the fractional-order or the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> can induce the synchronization transitions of bursting synchronization, perfect synchronization and phase synchronization. For perfect synchronization, the synchronization transitions of chaotic synchronization and periodic synchronization induced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> or parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> are also observed. In particular, when the fractional-order is small, such as 0.6, the synchronization transitions are more complex. Then, for a symmetrical ring neuronal network under electromagnetic radiation, with the change in the memory-conductance parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> of the electromagnetic radiation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula>, compared with the fractional-order HR model’s ring neuronal network without electromagnetic radiation, the synchronization behaviors are more complex. According to the simulation results, the influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> can be summarized into three cases: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>></mo><mn>0.02</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>0.06</mn><mo><</mo><mi>β</mi><mo><</mo><mn>0.02</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo><</mo><mo>−</mo><mn>0.06</mn></mrow></semantics></math></inline-formula>. The influence rules and some interesting phenomena are investigated. |
format |
article |
author |
Xin Yang Guangjun Zhang Xueren Li Dong Wang |
author_facet |
Xin Yang Guangjun Zhang Xueren Li Dong Wang |
author_sort |
Xin Yang |
title |
The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation |
title_short |
The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation |
title_full |
The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation |
title_fullStr |
The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation |
title_full_unstemmed |
The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation |
title_sort |
synchronization behaviors of coupled fractional-order neuronal networks under electromagnetic radiation |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/d913cacc96ad4ba0ba6979cb45ee4e1b |
work_keys_str_mv |
AT xinyang thesynchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation AT guangjunzhang thesynchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation AT xuerenli thesynchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation AT dongwang thesynchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation AT xinyang synchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation AT guangjunzhang synchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation AT xuerenli synchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation AT dongwang synchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation |
_version_ |
1718410308742021120 |
spelling |
oai:doaj.org-article:d913cacc96ad4ba0ba6979cb45ee4e1b2021-11-25T19:07:34ZThe Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation10.3390/sym131122042073-8994https://doaj.org/article/d913cacc96ad4ba0ba6979cb45ee4e1b2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2204https://doaj.org/toc/2073-8994Previous studies on the synchronization behaviors of neuronal networks were constructed by integer-order neuronal models. In contrast, this paper proposes that the above topics of symmetrical neuronal networks are constructed by fractional-order Hindmarsh–Rose (HR) models under electromagnetic radiation. They are then investigated numerically. From the research results, several novel phenomena and conclusions can be drawn. First, for the two symmetrical coupled neuronal models, the synchronization degree is influenced by the fractional-order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> and the feedback gain parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>. In addition, the fractional-order or the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> can induce the synchronization transitions of bursting synchronization, perfect synchronization and phase synchronization. For perfect synchronization, the synchronization transitions of chaotic synchronization and periodic synchronization induced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> or parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> are also observed. In particular, when the fractional-order is small, such as 0.6, the synchronization transitions are more complex. Then, for a symmetrical ring neuronal network under electromagnetic radiation, with the change in the memory-conductance parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> of the electromagnetic radiation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula>, compared with the fractional-order HR model’s ring neuronal network without electromagnetic radiation, the synchronization behaviors are more complex. According to the simulation results, the influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> can be summarized into three cases: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>></mo><mn>0.02</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>0.06</mn><mo><</mo><mi>β</mi><mo><</mo><mn>0.02</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo><</mo><mo>−</mo><mn>0.06</mn></mrow></semantics></math></inline-formula>. The influence rules and some interesting phenomena are investigated.Xin YangGuangjun ZhangXueren LiDong WangMDPI AGarticlefractional-order neuronal modelsynchronization transitionneuronal networkelectromagnetic radiationMathematicsQA1-939ENSymmetry, Vol 13, Iss 2204, p 2204 (2021) |