The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation

Previous studies on the synchronization behaviors of neuronal networks were constructed by integer-order neuronal models. In contrast, this paper proposes that the above topics of symmetrical neuronal networks are constructed by fractional-order Hindmarsh–Rose (HR) models under electromagnetic radia...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xin Yang, Guangjun Zhang, Xueren Li, Dong Wang
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/d913cacc96ad4ba0ba6979cb45ee4e1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d913cacc96ad4ba0ba6979cb45ee4e1b
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic fractional-order neuronal model
synchronization transition
neuronal network
electromagnetic radiation
Mathematics
QA1-939
spellingShingle fractional-order neuronal model
synchronization transition
neuronal network
electromagnetic radiation
Mathematics
QA1-939
Xin Yang
Guangjun Zhang
Xueren Li
Dong Wang
The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation
description Previous studies on the synchronization behaviors of neuronal networks were constructed by integer-order neuronal models. In contrast, this paper proposes that the above topics of symmetrical neuronal networks are constructed by fractional-order Hindmarsh–Rose (HR) models under electromagnetic radiation. They are then investigated numerically. From the research results, several novel phenomena and conclusions can be drawn. First, for the two symmetrical coupled neuronal models, the synchronization degree is influenced by the fractional-order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> and the feedback gain parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>. In addition, the fractional-order or the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> can induce the synchronization transitions of bursting synchronization, perfect synchronization and phase synchronization. For perfect synchronization, the synchronization transitions of chaotic synchronization and periodic synchronization induced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> or parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> are also observed. In particular, when the fractional-order is small, such as 0.6, the synchronization transitions are more complex. Then, for a symmetrical ring neuronal network under electromagnetic radiation, with the change in the memory-conductance parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> of the electromagnetic radiation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula>, compared with the fractional-order HR model’s ring neuronal network without electromagnetic radiation, the synchronization behaviors are more complex. According to the simulation results, the influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> can be summarized into three cases: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>></mo><mn>0.02</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>0.06</mn><mo><</mo><mi>β</mi><mo><</mo><mn>0.02</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo><</mo><mo>−</mo><mn>0.06</mn></mrow></semantics></math></inline-formula>. The influence rules and some interesting phenomena are investigated.
format article
author Xin Yang
Guangjun Zhang
Xueren Li
Dong Wang
author_facet Xin Yang
Guangjun Zhang
Xueren Li
Dong Wang
author_sort Xin Yang
title The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation
title_short The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation
title_full The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation
title_fullStr The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation
title_full_unstemmed The Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation
title_sort synchronization behaviors of coupled fractional-order neuronal networks under electromagnetic radiation
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/d913cacc96ad4ba0ba6979cb45ee4e1b
work_keys_str_mv AT xinyang thesynchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation
AT guangjunzhang thesynchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation
AT xuerenli thesynchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation
AT dongwang thesynchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation
AT xinyang synchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation
AT guangjunzhang synchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation
AT xuerenli synchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation
AT dongwang synchronizationbehaviorsofcoupledfractionalorderneuronalnetworksunderelectromagneticradiation
_version_ 1718410308742021120
spelling oai:doaj.org-article:d913cacc96ad4ba0ba6979cb45ee4e1b2021-11-25T19:07:34ZThe Synchronization Behaviors of Coupled Fractional-Order Neuronal Networks under Electromagnetic Radiation10.3390/sym131122042073-8994https://doaj.org/article/d913cacc96ad4ba0ba6979cb45ee4e1b2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2204https://doaj.org/toc/2073-8994Previous studies on the synchronization behaviors of neuronal networks were constructed by integer-order neuronal models. In contrast, this paper proposes that the above topics of symmetrical neuronal networks are constructed by fractional-order Hindmarsh–Rose (HR) models under electromagnetic radiation. They are then investigated numerically. From the research results, several novel phenomena and conclusions can be drawn. First, for the two symmetrical coupled neuronal models, the synchronization degree is influenced by the fractional-order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> and the feedback gain parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>. In addition, the fractional-order or the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> can induce the synchronization transitions of bursting synchronization, perfect synchronization and phase synchronization. For perfect synchronization, the synchronization transitions of chaotic synchronization and periodic synchronization induced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> or parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> are also observed. In particular, when the fractional-order is small, such as 0.6, the synchronization transitions are more complex. Then, for a symmetrical ring neuronal network under electromagnetic radiation, with the change in the memory-conductance parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> of the electromagnetic radiation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula>, compared with the fractional-order HR model’s ring neuronal network without electromagnetic radiation, the synchronization behaviors are more complex. According to the simulation results, the influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> can be summarized into three cases: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>></mo><mn>0.02</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>0.06</mn><mo><</mo><mi>β</mi><mo><</mo><mn>0.02</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo><</mo><mo>−</mo><mn>0.06</mn></mrow></semantics></math></inline-formula>. The influence rules and some interesting phenomena are investigated.Xin YangGuangjun ZhangXueren LiDong WangMDPI AGarticlefractional-order neuronal modelsynchronization transitionneuronal networkelectromagnetic radiationMathematicsQA1-939ENSymmetry, Vol 13, Iss 2204, p 2204 (2021)