Semantic IFC Data Model for Automatic Safety Risk Identification in Deep Excavation Projects
Safety risk identification throughout deep excavation construction is an information-intensive task, involving construction information scattered in project planning documentation and dynamic information obtained from different field sensors. However, inefficient information integration and exchange...
Enregistré dans:
Auteurs principaux: | Yongcheng Zhang, Xuejiao Xing, Maxwell Fordjour Antwi-Afari |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d91934ba90d54d67b281b1113a1f28ac |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Semantics-Based Approach for Simplifying IFC Building Models to Facilitate the Use of BIM Models in GIS
par: Junxiang Zhu, et autres
Publié: (2021) -
IFC - Editorial Board
Publié: (2021) -
Characterization of Underlying Twin Shield Tunnels Due to Foundation-Excavation Unloading in Soft Soils: An Experimental and Numerical Study
par: Xiaodong Cheng, et autres
Publié: (2021) -
Technical condition diagnostics and material testing of critical points of steel structure of rotary excavators and depositors
par: Aličić Merim M., et autres
Publié: (2021) -
Optimization Analysis of Excavation Procedure Design of Underground Powerhouses under High In Situ Stress in China
par: Xiao Liu, et autres
Publié: (2021)