Study of <i>θ<sup>ϕ</sup></i> Networks via Zagreb Connection Indices
Graph theory can be used to optimize interconnection network systems. The compatibility of such networks mainly depends on their topology. Topological indices may characterize the topology of such networks. In this work, we studied a symmetric network <inline-formula><math xmlns="http:...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d919e146a84b4c949bc47ff07ace5cbf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Graph theory can be used to optimize interconnection network systems. The compatibility of such networks mainly depends on their topology. Topological indices may characterize the topology of such networks. In this work, we studied a symmetric network <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>θ</mi><mi>ϕ</mi></msup></semantics></math></inline-formula> formed by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> time repetition of the process of joining <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> copies of a selected graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> in such a way that corresponding vertices of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> in all the copies are joined with each other by a new edge. The symmetry of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>θ</mi><mi>ϕ</mi></msup></semantics></math></inline-formula> is ensured by the involvement of complete graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>θ</mi></msub></semantics></math></inline-formula> in the construction process. The free hand to choose an initial graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> and formation of chemical graphs using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>θ</mi><mi>ϕ</mi></msup><mo>Ω</mo></mrow></semantics></math></inline-formula> enhance its importance as a family of graphs which covers all the pre-defined graphs, along with space for new graphs, possibly formed in this way. We used Zagreb connection indices for the characterization of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>θ</mi><mi>ϕ</mi></msup><mo>Ω</mo></mrow></semantics></math></inline-formula>. These indices have gained worth in the field of chemical graph theory in very small duration due to their predictive power for enthalpy, entropy, and acentric factor. These computations are mathematically novel and assist in topological characterization of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>θ</mi><mi>ϕ</mi></msup><mo>Ω</mo></mrow></semantics></math></inline-formula> to enable its emerging use. |
---|