Estimating disease prevalence in large datasets using genetic risk scores
Estimating disease prevalence in biobanks is prone to error, especially for self-reported traits. Here, the authors propose a method to estimate the prevalence of a disease within a cohort based on genetic risk scores.
Enregistré dans:
Auteurs principaux: | Benjamin D. Evans, Piotr Słowiński, Andrew T. Hattersley, Samuel E. Jones, Seth Sharp, Robert A. Kimmitt, Michael N. Weedon, Richard A. Oram, Krasimira Tsaneva-Atanasova, Nicholas J. Thomas |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d91ce2dcd1724d8bbce7c764767dfff3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Estimating heritability and genetic correlations from large health datasets in the absence of genetic data
par: Gengjie Jia, et autres
Publié: (2019) -
The impact of improved data quality on the prevalence estimates of anthropometric measures using DHS datasets in India
par: Harsh Vivek Harkare, et autres
Publié: (2021) -
Mathematical-based microbiome analytics for clinical translation
par: Jayanth Kumar Narayana, et autres
Publié: (2021) -
Unravelling socio-motor biomarkers in schizophrenia
par: Piotr Słowiński, et autres
Publié: (2017) -
Large scale datasets for Image and Video Captioning in Italian
par: Scaiella Antonio, et autres
Publié: (2019)