Estimating disease prevalence in large datasets using genetic risk scores
Estimating disease prevalence in biobanks is prone to error, especially for self-reported traits. Here, the authors propose a method to estimate the prevalence of a disease within a cohort based on genetic risk scores.
Guardado en:
Autores principales: | Benjamin D. Evans, Piotr Słowiński, Andrew T. Hattersley, Samuel E. Jones, Seth Sharp, Robert A. Kimmitt, Michael N. Weedon, Richard A. Oram, Krasimira Tsaneva-Atanasova, Nicholas J. Thomas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d91ce2dcd1724d8bbce7c764767dfff3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Estimating heritability and genetic correlations from large health datasets in the absence of genetic data
por: Gengjie Jia, et al.
Publicado: (2019) -
The impact of improved data quality on the prevalence estimates of anthropometric measures using DHS datasets in India
por: Harsh Vivek Harkare, et al.
Publicado: (2021) -
Mathematical-based microbiome analytics for clinical translation
por: Jayanth Kumar Narayana, et al.
Publicado: (2021) -
Unravelling socio-motor biomarkers in schizophrenia
por: Piotr Słowiński, et al.
Publicado: (2017) -
Large scale datasets for Image and Video Captioning in Italian
por: Scaiella Antonio, et al.
Publicado: (2019)