Sequence-to-function deep learning frameworks for engineered riboregulators
The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d92e1c3c09eb4750aa706310533722cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches. |
---|