Sequence-to-function deep learning frameworks for engineered riboregulators
The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d92e1c3c09eb4750aa706310533722cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d92e1c3c09eb4750aa706310533722cf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d92e1c3c09eb4750aa706310533722cf2021-12-02T18:09:04ZSequence-to-function deep learning frameworks for engineered riboregulators10.1038/s41467-020-18676-22041-1723https://doaj.org/article/d92e1c3c09eb4750aa706310533722cf2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18676-2https://doaj.org/toc/2041-1723The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches.Jacqueline A. ValeriKatherine M. CollinsPradeep RameshMiguel A. AlcantarBianca A. LepeTimothy K. LuDiogo M. CamachoNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-14 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jacqueline A. Valeri Katherine M. Collins Pradeep Ramesh Miguel A. Alcantar Bianca A. Lepe Timothy K. Lu Diogo M. Camacho Sequence-to-function deep learning frameworks for engineered riboregulators |
description |
The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches. |
format |
article |
author |
Jacqueline A. Valeri Katherine M. Collins Pradeep Ramesh Miguel A. Alcantar Bianca A. Lepe Timothy K. Lu Diogo M. Camacho |
author_facet |
Jacqueline A. Valeri Katherine M. Collins Pradeep Ramesh Miguel A. Alcantar Bianca A. Lepe Timothy K. Lu Diogo M. Camacho |
author_sort |
Jacqueline A. Valeri |
title |
Sequence-to-function deep learning frameworks for engineered riboregulators |
title_short |
Sequence-to-function deep learning frameworks for engineered riboregulators |
title_full |
Sequence-to-function deep learning frameworks for engineered riboregulators |
title_fullStr |
Sequence-to-function deep learning frameworks for engineered riboregulators |
title_full_unstemmed |
Sequence-to-function deep learning frameworks for engineered riboregulators |
title_sort |
sequence-to-function deep learning frameworks for engineered riboregulators |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/d92e1c3c09eb4750aa706310533722cf |
work_keys_str_mv |
AT jacquelineavaleri sequencetofunctiondeeplearningframeworksforengineeredriboregulators AT katherinemcollins sequencetofunctiondeeplearningframeworksforengineeredriboregulators AT pradeepramesh sequencetofunctiondeeplearningframeworksforengineeredriboregulators AT miguelaalcantar sequencetofunctiondeeplearningframeworksforengineeredriboregulators AT biancaalepe sequencetofunctiondeeplearningframeworksforengineeredriboregulators AT timothyklu sequencetofunctiondeeplearningframeworksforengineeredriboregulators AT diogomcamacho sequencetofunctiondeeplearningframeworksforengineeredriboregulators |
_version_ |
1718378660761698304 |