Sequence-to-function deep learning frameworks for engineered riboregulators

The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches.

Guardado en:
Detalles Bibliográficos
Autores principales: Jacqueline A. Valeri, Katherine M. Collins, Pradeep Ramesh, Miguel A. Alcantar, Bianca A. Lepe, Timothy K. Lu, Diogo M. Camacho
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/d92e1c3c09eb4750aa706310533722cf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d92e1c3c09eb4750aa706310533722cf
record_format dspace
spelling oai:doaj.org-article:d92e1c3c09eb4750aa706310533722cf2021-12-02T18:09:04ZSequence-to-function deep learning frameworks for engineered riboregulators10.1038/s41467-020-18676-22041-1723https://doaj.org/article/d92e1c3c09eb4750aa706310533722cf2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18676-2https://doaj.org/toc/2041-1723The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches.Jacqueline A. ValeriKatherine M. CollinsPradeep RameshMiguel A. AlcantarBianca A. LepeTimothy K. LuDiogo M. CamachoNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jacqueline A. Valeri
Katherine M. Collins
Pradeep Ramesh
Miguel A. Alcantar
Bianca A. Lepe
Timothy K. Lu
Diogo M. Camacho
Sequence-to-function deep learning frameworks for engineered riboregulators
description The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches.
format article
author Jacqueline A. Valeri
Katherine M. Collins
Pradeep Ramesh
Miguel A. Alcantar
Bianca A. Lepe
Timothy K. Lu
Diogo M. Camacho
author_facet Jacqueline A. Valeri
Katherine M. Collins
Pradeep Ramesh
Miguel A. Alcantar
Bianca A. Lepe
Timothy K. Lu
Diogo M. Camacho
author_sort Jacqueline A. Valeri
title Sequence-to-function deep learning frameworks for engineered riboregulators
title_short Sequence-to-function deep learning frameworks for engineered riboregulators
title_full Sequence-to-function deep learning frameworks for engineered riboregulators
title_fullStr Sequence-to-function deep learning frameworks for engineered riboregulators
title_full_unstemmed Sequence-to-function deep learning frameworks for engineered riboregulators
title_sort sequence-to-function deep learning frameworks for engineered riboregulators
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/d92e1c3c09eb4750aa706310533722cf
work_keys_str_mv AT jacquelineavaleri sequencetofunctiondeeplearningframeworksforengineeredriboregulators
AT katherinemcollins sequencetofunctiondeeplearningframeworksforengineeredriboregulators
AT pradeepramesh sequencetofunctiondeeplearningframeworksforengineeredriboregulators
AT miguelaalcantar sequencetofunctiondeeplearningframeworksforengineeredriboregulators
AT biancaalepe sequencetofunctiondeeplearningframeworksforengineeredriboregulators
AT timothyklu sequencetofunctiondeeplearningframeworksforengineeredriboregulators
AT diogomcamacho sequencetofunctiondeeplearningframeworksforengineeredriboregulators
_version_ 1718378660761698304