Optical coherent dot-product chip for sophisticated deep learning regression
An optical coherent chip completes state-of-the-art image reconstruction tasks with 32-bit computer comparable image quality, showing potential in conquering sophisticated deep learning regression tasks.
Guardado en:
Autores principales: | Shaofu Xu, Jing Wang, Haowen Shu, Zhike Zhang, Sicheng Yi, Bowen Bai, Xingjun Wang, Jianguo Liu, Weiwen Zou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d944f037040443c4a5d9ce6602ad1761 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Thermo-optically induced transparency on a photonic chip
por: Marco Clementi, et al.
Publicado: (2021) -
Light management with quantum nanostructured dots-in-host semiconductors
por: M. Alexandre, et al.
Publicado: (2021) -
Polarization sensitive optical coherence tomography with single input for imaging depth-resolved collagen organizations
por: Peijun Tang, et al.
Publicado: (2021) -
Optical information processing using dual state quantum dot lasers: complexity through simplicity
por: Bryan Kelleher, et al.
Publicado: (2021) -
Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high V OC
por: Zhiwei Ren, et al.
Publicado: (2021)