CoV-RBD121-NP Vaccine Candidate Protects against Symptomatic Disease following SARS-CoV-2 Challenge in K18-hACE2 Mice and Induces Protective Responses That Prevent COVID-19-Associated Immunopathology

We developed a SARS-CoV-2 vaccine candidate (CoV-RBD121-NP) comprised of a tobacco mosaic virus-like nanoparticle conjugated to the receptor-binding domain of the spike glycoprotein of SARS-CoV-2 fused to a human IgG1 Fc domain. CoV-RBD121-NP elicits strong antibody responses in C57BL/6 mice and is...

Full description

Saved in:
Bibliographic Details
Main Authors: Jennifer K. DeMarco, Joshua M. Royal, William E. Severson, Jon D. Gabbard, Steve Hume, Josh Morton, Kelsi Swope, Carrie A. Simpson, John W. Shepherd, Barry Bratcher, Kenneth E. Palmer, Gregory P. Pogue
Format: article
Language:EN
Published: MDPI AG 2021
Subjects:
TMV
R
Online Access:https://doaj.org/article/d948abd924354895b2c5b1c46d082bd9
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We developed a SARS-CoV-2 vaccine candidate (CoV-RBD121-NP) comprised of a tobacco mosaic virus-like nanoparticle conjugated to the receptor-binding domain of the spike glycoprotein of SARS-CoV-2 fused to a human IgG1 Fc domain. CoV-RBD121-NP elicits strong antibody responses in C57BL/6 mice and is stable for up to 12 months at 2–8 or 22–28 °C. Here, we showed that this vaccine induces a strong neutralizing antibody response in K18-hACE2 mice. Furthermore, we demonstrated that immunization protects mice from virus-associated mortality and symptomatic disease. Our data indicated that a sufficient pre-existing pool of neutralizing antibodies is required to restrict SARS-CoV-2 replication upon exposure and prevent induction of inflammatory mediators associated with severe disease. Finally, we identified a potential role for CXCL5 as a protective cytokine in SARS-CoV-2 infection. Our results suggested that disruption of the CXCL5 and CXCL1/2 axis may be important early components of the inflammatory dysregulation that is characteristic of severe cases of COVID-19.