Hybridizing Feature Selection and Feature Learning Approaches in QSAR Modeling for Drug Discovery
Abstract Quantitative structure–activity relationship modeling using machine learning techniques constitutes a complex computational problem, where the identification of the most informative molecular descriptors for predicting a specific target property plays a critical role. Two main general appro...
Enregistré dans:
Auteurs principaux: | Ignacio Ponzoni, Víctor Sebastián-Pérez, Carlos Requena-Triguero, Carlos Roca, María J. Martínez, Fiorella Cravero, Mónica F. Díaz, Juan A. Páez, Ramón Gómez Arrayás, Javier Adrio, Nuria E. Campillo |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d95973b8023d4de68ded65e398e04d19 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins
par: Yuxin Gong, et autres
Publié: (2021) -
Machine Learning-Based Prediction of Drug-Drug Interactions for Histamine Antagonist Using Hybrid Chemical Features
par: Luong Huu Dang, et autres
Publié: (2021) -
redbiom: a Rapid Sample Discovery and Feature Characterization System
par: Daniel McDonald, et autres
Publié: (2019) -
Clinical features and risk factors associated with prenatal exposure to drugs of abuse
par: Antonia Roca, et autres
Publié: (2021) -
SAR and QSAR in environmental research
Publié: (1993)