Hybridizing Feature Selection and Feature Learning Approaches in QSAR Modeling for Drug Discovery
Abstract Quantitative structure–activity relationship modeling using machine learning techniques constitutes a complex computational problem, where the identification of the most informative molecular descriptors for predicting a specific target property plays a critical role. Two main general appro...
Guardado en:
Autores principales: | Ignacio Ponzoni, Víctor Sebastián-Pérez, Carlos Requena-Triguero, Carlos Roca, María J. Martínez, Fiorella Cravero, Mónica F. Díaz, Juan A. Páez, Ramón Gómez Arrayás, Javier Adrio, Nuria E. Campillo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d95973b8023d4de68ded65e398e04d19 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins
por: Yuxin Gong, et al.
Publicado: (2021) -
Machine Learning-Based Prediction of Drug-Drug Interactions for Histamine Antagonist Using Hybrid Chemical Features
por: Luong Huu Dang, et al.
Publicado: (2021) -
redbiom: a Rapid Sample Discovery and Feature Characterization System
por: Daniel McDonald, et al.
Publicado: (2019) -
Clinical features and risk factors associated with prenatal exposure to drugs of abuse
por: Antonia Roca, et al.
Publicado: (2021) -
SAR and QSAR in environmental research
Publicado: (1993)