Does the Loop Quantum <i>μ</i><sub>o</sub> Scheme Permit Black Hole Formation?
We explore the way different loop quantization prescriptions affect the formation of trapped surfaces in the gravitational collapse of a homogeneous dust cloud, with particular emphasis on the so-called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d96c6012b4ee4ba58d78f7f4c6113214 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d96c6012b4ee4ba58d78f7f4c6113214 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d96c6012b4ee4ba58d78f7f4c61132142021-11-25T19:09:31ZDoes the Loop Quantum <i>μ</i><sub>o</sub> Scheme Permit Black Hole Formation?10.3390/universe71104062218-1997https://doaj.org/article/d96c6012b4ee4ba58d78f7f4c61132142021-10-01T00:00:00Zhttps://www.mdpi.com/2218-1997/7/11/406https://doaj.org/toc/2218-1997We explore the way different loop quantization prescriptions affect the formation of trapped surfaces in the gravitational collapse of a homogeneous dust cloud, with particular emphasis on the so-called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>o</mi></msub></semantics></math></inline-formula> scheme in which loop quantum cosmology was initially formulated. Its undesirable features in cosmological models led to the so-called improved dynamics or the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>μ</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> scheme. While the jury is still out on the right scheme for black hole spacetimes, we show that as far as black hole formation is concerned, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>o</mi></msub></semantics></math></inline-formula> scheme has another, so far unknown, serious problem. We found that in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>o</mi></msub></semantics></math></inline-formula> scheme, no trapped surfaces would form for a nonsingular collapse of a homogeneous dust cloud in the marginally bound case unless the minimum nonzero area of the loops over which holonomies are computed or the Barbero–Immirzi parameter decreases almost four times from its standard value. It turns out that the trapped surfaces in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>o</mi></msub></semantics></math></inline-formula> scheme for the marginally bound case are also forbidden for an arbitrary matter content as long as the collapsing interior is isometric to a spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime. We found that in contrast to the situation in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>o</mi></msub></semantics></math></inline-formula> scheme, black holes can form in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>μ</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> scheme, as well as other lattice refinements with a mass gap determined by quantum geometry.Bao-Fei LiParampreet SinghMDPI AGarticleloop quantum cosmologyloop quantum gravityElementary particle physicsQC793-793.5ENUniverse, Vol 7, Iss 406, p 406 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
loop quantum cosmology loop quantum gravity Elementary particle physics QC793-793.5 |
spellingShingle |
loop quantum cosmology loop quantum gravity Elementary particle physics QC793-793.5 Bao-Fei Li Parampreet Singh Does the Loop Quantum <i>μ</i><sub>o</sub> Scheme Permit Black Hole Formation? |
description |
We explore the way different loop quantization prescriptions affect the formation of trapped surfaces in the gravitational collapse of a homogeneous dust cloud, with particular emphasis on the so-called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>o</mi></msub></semantics></math></inline-formula> scheme in which loop quantum cosmology was initially formulated. Its undesirable features in cosmological models led to the so-called improved dynamics or the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>μ</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> scheme. While the jury is still out on the right scheme for black hole spacetimes, we show that as far as black hole formation is concerned, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>o</mi></msub></semantics></math></inline-formula> scheme has another, so far unknown, serious problem. We found that in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>o</mi></msub></semantics></math></inline-formula> scheme, no trapped surfaces would form for a nonsingular collapse of a homogeneous dust cloud in the marginally bound case unless the minimum nonzero area of the loops over which holonomies are computed or the Barbero–Immirzi parameter decreases almost four times from its standard value. It turns out that the trapped surfaces in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>o</mi></msub></semantics></math></inline-formula> scheme for the marginally bound case are also forbidden for an arbitrary matter content as long as the collapsing interior is isometric to a spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime. We found that in contrast to the situation in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mi>o</mi></msub></semantics></math></inline-formula> scheme, black holes can form in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>μ</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> scheme, as well as other lattice refinements with a mass gap determined by quantum geometry. |
format |
article |
author |
Bao-Fei Li Parampreet Singh |
author_facet |
Bao-Fei Li Parampreet Singh |
author_sort |
Bao-Fei Li |
title |
Does the Loop Quantum <i>μ</i><sub>o</sub> Scheme Permit Black Hole Formation? |
title_short |
Does the Loop Quantum <i>μ</i><sub>o</sub> Scheme Permit Black Hole Formation? |
title_full |
Does the Loop Quantum <i>μ</i><sub>o</sub> Scheme Permit Black Hole Formation? |
title_fullStr |
Does the Loop Quantum <i>μ</i><sub>o</sub> Scheme Permit Black Hole Formation? |
title_full_unstemmed |
Does the Loop Quantum <i>μ</i><sub>o</sub> Scheme Permit Black Hole Formation? |
title_sort |
does the loop quantum <i>μ</i><sub>o</sub> scheme permit black hole formation? |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/d96c6012b4ee4ba58d78f7f4c6113214 |
work_keys_str_mv |
AT baofeili doestheloopquantumimisubosubschemepermitblackholeformation AT parampreetsingh doestheloopquantumimisubosubschemepermitblackholeformation |
_version_ |
1718410248054636544 |