An adaptive image enhancement method for a recirculating aquaculture system

Abstract Due to the low and uneven illumination that is typical of a recirculating aquaculture system (RAS), visible and near infrared (NIR) images collected from RASs always have low brightness and contrast. To resolve this issue, this paper proposes an image enhancement method based on the Multi-S...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chao Zhou, Xinting Yang, Baihai Zhang, Kai Lin, Daming Xu, Qiang Guo, Chuanheng Sun
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d979efcdac8c4589a09c2ffa8c508711
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d979efcdac8c4589a09c2ffa8c508711
record_format dspace
spelling oai:doaj.org-article:d979efcdac8c4589a09c2ffa8c5087112021-12-02T11:52:20ZAn adaptive image enhancement method for a recirculating aquaculture system10.1038/s41598-017-06538-92045-2322https://doaj.org/article/d979efcdac8c4589a09c2ffa8c5087112017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06538-9https://doaj.org/toc/2045-2322Abstract Due to the low and uneven illumination that is typical of a recirculating aquaculture system (RAS), visible and near infrared (NIR) images collected from RASs always have low brightness and contrast. To resolve this issue, this paper proposes an image enhancement method based on the Multi-Scale Retinex (MSR) algorithm and a greyscale nonlinear transformation. First, the images are processed using the MSR algorithm to eliminate the influence of low and uneven illumination. Then, the normalized incomplete Beta function is used to perform a greyscale nonlinear transformation. The function’s optimal parameters (α and β) are automatically selected by the particle swarm optimization (PSO) algorithm based on an image contrast measurement function. This adaptive image enhancement method is compared with other classic enhancement methods. The results show that the proposed method greatly improves the image contrast and highlights dark areas, which is helpful during further analysis of these images.Chao ZhouXinting YangBaihai ZhangKai LinDaming XuQiang GuoChuanheng SunNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Chao Zhou
Xinting Yang
Baihai Zhang
Kai Lin
Daming Xu
Qiang Guo
Chuanheng Sun
An adaptive image enhancement method for a recirculating aquaculture system
description Abstract Due to the low and uneven illumination that is typical of a recirculating aquaculture system (RAS), visible and near infrared (NIR) images collected from RASs always have low brightness and contrast. To resolve this issue, this paper proposes an image enhancement method based on the Multi-Scale Retinex (MSR) algorithm and a greyscale nonlinear transformation. First, the images are processed using the MSR algorithm to eliminate the influence of low and uneven illumination. Then, the normalized incomplete Beta function is used to perform a greyscale nonlinear transformation. The function’s optimal parameters (α and β) are automatically selected by the particle swarm optimization (PSO) algorithm based on an image contrast measurement function. This adaptive image enhancement method is compared with other classic enhancement methods. The results show that the proposed method greatly improves the image contrast and highlights dark areas, which is helpful during further analysis of these images.
format article
author Chao Zhou
Xinting Yang
Baihai Zhang
Kai Lin
Daming Xu
Qiang Guo
Chuanheng Sun
author_facet Chao Zhou
Xinting Yang
Baihai Zhang
Kai Lin
Daming Xu
Qiang Guo
Chuanheng Sun
author_sort Chao Zhou
title An adaptive image enhancement method for a recirculating aquaculture system
title_short An adaptive image enhancement method for a recirculating aquaculture system
title_full An adaptive image enhancement method for a recirculating aquaculture system
title_fullStr An adaptive image enhancement method for a recirculating aquaculture system
title_full_unstemmed An adaptive image enhancement method for a recirculating aquaculture system
title_sort adaptive image enhancement method for a recirculating aquaculture system
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/d979efcdac8c4589a09c2ffa8c508711
work_keys_str_mv AT chaozhou anadaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT xintingyang anadaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT baihaizhang anadaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT kailin anadaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT damingxu anadaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT qiangguo anadaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT chuanhengsun anadaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT chaozhou adaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT xintingyang adaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT baihaizhang adaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT kailin adaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT damingxu adaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT qiangguo adaptiveimageenhancementmethodforarecirculatingaquaculturesystem
AT chuanhengsun adaptiveimageenhancementmethodforarecirculatingaquaculturesystem
_version_ 1718395074416476160