A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis

This study aimed to evaluate the diagnostic potential of a novel RFO model in differentiating GBM and SBM with multiparametric MR sequences collected from 244 (131 GBM and 113 SBM) patients. Three basic volume of interests (VOIs) were delineated on the conventional axial MR images (T<sub>1<...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jialiang Wu, Fangrong Liang, Ruili Wei, Shengsheng Lai, Xiaofei Lv, Shiwei Luo, Zhe Wu, Huixian Chen, Wanli Zhang, Xiangling Zeng, Xianghua Ye, Yong Wu, Xinhua Wei, Xinqing Jiang, Xin Zhen, Ruimeng Yang
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
MRI
Acceso en línea:https://doaj.org/article/d97cb2f6355240bcbc4ce6c8ed0aa331
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d97cb2f6355240bcbc4ce6c8ed0aa331
record_format dspace
spelling oai:doaj.org-article:d97cb2f6355240bcbc4ce6c8ed0aa3312021-11-25T17:04:00ZA Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis10.3390/cancers132257932072-6694https://doaj.org/article/d97cb2f6355240bcbc4ce6c8ed0aa3312021-11-01T00:00:00Zhttps://www.mdpi.com/2072-6694/13/22/5793https://doaj.org/toc/2072-6694This study aimed to evaluate the diagnostic potential of a novel RFO model in differentiating GBM and SBM with multiparametric MR sequences collected from 244 (131 GBM and 113 SBM) patients. Three basic volume of interests (VOIs) were delineated on the conventional axial MR images (T<sub>1</sub>WI, T<sub>2</sub>WI, T<sub>2</sub>_FLAIR, and CE_T<sub>1</sub>WI), including volumetric non-enhanced tumor (nET), enhanced tumor (ET), and peritumoral edema (pTE). Using the RFO model, radiomics features extracted from different multiparametric MRI sequence(s) and VOI(s) were fused and the best sequence and VOI, or possible combinations, were determined. A multi-disciplinary team (MDT)-like fusion was performed to integrate predictions from the high-performing models for the final discrimination of GBM vs. SBM. Image features extracted from the volumetric ET (VOI<sub>ET</sub>) had dominant predictive performances over features from other VOI combinations. Fusion of VOI<sub>ET</sub> features from the T<sub>1</sub>WI and T<sub>2</sub>_FLAIR sequences via the RFO model achieved a discrimination accuracy of AUC = 0.925, accuracy = 0.855, sensitivity = 0.856, and specificity = 0.853, on the independent testing cohort 1, and AUC = 0.859, accuracy = 0.836, sensitivity = 0.708, and specificity = 0.919 on the independent testing cohort 2, which significantly outperformed three experienced radiologists (<i>p</i> = 0.03, 0.01, 0.02, and 0.01, and <i>p</i> = 0.02, 0.01, 0.45, and 0.02, respectively) and the MDT-decision result of three experienced experts (<i>p</i> = 0.03, 0.02, 0.03, and 0.02, and <i>p</i> = 0.03, 0.02, 0.44, and 0.03, respectively).Jialiang WuFangrong LiangRuili WeiShengsheng LaiXiaofei LvShiwei LuoZhe WuHuixian ChenWanli ZhangXiangling ZengXianghua YeYong WuXinhua WeiXinqing JiangXin ZhenRuimeng YangMDPI AGarticleglioblastoma multiformesolitary brain metastasisMRIradiomicsfusionNeoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENCancers, Vol 13, Iss 5793, p 5793 (2021)
institution DOAJ
collection DOAJ
language EN
topic glioblastoma multiforme
solitary brain metastasis
MRI
radiomics
fusion
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
spellingShingle glioblastoma multiforme
solitary brain metastasis
MRI
radiomics
fusion
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Jialiang Wu
Fangrong Liang
Ruili Wei
Shengsheng Lai
Xiaofei Lv
Shiwei Luo
Zhe Wu
Huixian Chen
Wanli Zhang
Xiangling Zeng
Xianghua Ye
Yong Wu
Xinhua Wei
Xinqing Jiang
Xin Zhen
Ruimeng Yang
A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis
description This study aimed to evaluate the diagnostic potential of a novel RFO model in differentiating GBM and SBM with multiparametric MR sequences collected from 244 (131 GBM and 113 SBM) patients. Three basic volume of interests (VOIs) were delineated on the conventional axial MR images (T<sub>1</sub>WI, T<sub>2</sub>WI, T<sub>2</sub>_FLAIR, and CE_T<sub>1</sub>WI), including volumetric non-enhanced tumor (nET), enhanced tumor (ET), and peritumoral edema (pTE). Using the RFO model, radiomics features extracted from different multiparametric MRI sequence(s) and VOI(s) were fused and the best sequence and VOI, or possible combinations, were determined. A multi-disciplinary team (MDT)-like fusion was performed to integrate predictions from the high-performing models for the final discrimination of GBM vs. SBM. Image features extracted from the volumetric ET (VOI<sub>ET</sub>) had dominant predictive performances over features from other VOI combinations. Fusion of VOI<sub>ET</sub> features from the T<sub>1</sub>WI and T<sub>2</sub>_FLAIR sequences via the RFO model achieved a discrimination accuracy of AUC = 0.925, accuracy = 0.855, sensitivity = 0.856, and specificity = 0.853, on the independent testing cohort 1, and AUC = 0.859, accuracy = 0.836, sensitivity = 0.708, and specificity = 0.919 on the independent testing cohort 2, which significantly outperformed three experienced radiologists (<i>p</i> = 0.03, 0.01, 0.02, and 0.01, and <i>p</i> = 0.02, 0.01, 0.45, and 0.02, respectively) and the MDT-decision result of three experienced experts (<i>p</i> = 0.03, 0.02, 0.03, and 0.02, and <i>p</i> = 0.03, 0.02, 0.44, and 0.03, respectively).
format article
author Jialiang Wu
Fangrong Liang
Ruili Wei
Shengsheng Lai
Xiaofei Lv
Shiwei Luo
Zhe Wu
Huixian Chen
Wanli Zhang
Xiangling Zeng
Xianghua Ye
Yong Wu
Xinhua Wei
Xinqing Jiang
Xin Zhen
Ruimeng Yang
author_facet Jialiang Wu
Fangrong Liang
Ruili Wei
Shengsheng Lai
Xiaofei Lv
Shiwei Luo
Zhe Wu
Huixian Chen
Wanli Zhang
Xiangling Zeng
Xianghua Ye
Yong Wu
Xinhua Wei
Xinqing Jiang
Xin Zhen
Ruimeng Yang
author_sort Jialiang Wu
title A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis
title_short A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis
title_full A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis
title_fullStr A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis
title_full_unstemmed A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis
title_sort multiparametric mr-based radiofusionomics model with robust capabilities of differentiating glioblastoma multiforme from solitary brain metastasis
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/d97cb2f6355240bcbc4ce6c8ed0aa331
work_keys_str_mv AT jialiangwu amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT fangrongliang amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT ruiliwei amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT shengshenglai amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xiaofeilv amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT shiweiluo amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT zhewu amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT huixianchen amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT wanlizhang amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xianglingzeng amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xianghuaye amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT yongwu amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xinhuawei amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xinqingjiang amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xinzhen amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT ruimengyang amultiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT jialiangwu multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT fangrongliang multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT ruiliwei multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT shengshenglai multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xiaofeilv multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT shiweiluo multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT zhewu multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT huixianchen multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT wanlizhang multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xianglingzeng multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xianghuaye multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT yongwu multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xinhuawei multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xinqingjiang multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT xinzhen multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
AT ruimengyang multiparametricmrbasedradiofusionomicsmodelwithrobustcapabilitiesofdifferentiatingglioblastomamultiformefromsolitarybrainmetastasis
_version_ 1718412807375945728