Neural network and logistic regression diagnostic prediction models for giant cell arteritis: development and validation

Edsel B Ing,1 Neil R Miller,2 Angeline Nguyen,2 Wanhua Su,3 Lulu LCD Bursztyn,4 Meredith Poole,5 Vinay Kansal,6 Andrew Toren,7 Dana Albreki,8 Jack G Mouhanna,9 Alla Muladzanov,10 Mikaël Bernier,11 Mark Gans,10 Dongho Lee,12 Colten Wendel,13 Claire Sheldon,13 Marc Shields,14 Lorne Bellan,15...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ing EB, Miller NR, Nguyen A, Su W, Bursztyn LLCD, Poole M, Kansal V, Toren A, Albreiki D, Mouhanna JG, Muladzanov A, Bernier M, Gans M, Lee D, Wendel C, Sheldon C, Shields M, Bellan L, Lee-Wing M, Mohadjer Y, Nijhawan N, Tyndel F, Sundaram ANE, ten Hove MW, Chen JJ, Rodriguez AR, Hu A, Khalidi N, Ing R, Wong SWK, Torun N
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/d9856a79330c4ec5be247b628474ab1f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d9856a79330c4ec5be247b628474ab1f
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic giant cell arteritis
temporal artery biopsy
neural network
logistic regression
prediction models
Ophthalmology
RE1-994
spellingShingle giant cell arteritis
temporal artery biopsy
neural network
logistic regression
prediction models
Ophthalmology
RE1-994
Ing EB
Miller NR
Nguyen A
Su W
Bursztyn LLCD
Poole M
Kansal V
Toren A
Albreiki D
Mouhanna JG
Muladzanov A
Bernier M
Gans M
Lee D
Wendel C
Sheldon C
Shields M
Bellan L
Lee-Wing M
Mohadjer Y
Nijhawan N
Tyndel F
Sundaram ANE
ten Hove MW
Chen JJ
Rodriguez AR
Hu A
Khalidi N
Ing R
Wong SWK
Torun N
Neural network and logistic regression diagnostic prediction models for giant cell arteritis: development and validation
description Edsel B Ing,1 Neil R Miller,2 Angeline Nguyen,2 Wanhua Su,3 Lulu LCD Bursztyn,4 Meredith Poole,5 Vinay Kansal,6 Andrew Toren,7 Dana Albreki,8 Jack G Mouhanna,9 Alla Muladzanov,10 Mikaël Bernier,11 Mark Gans,10 Dongho Lee,12 Colten Wendel,13 Claire Sheldon,13 Marc Shields,14 Lorne Bellan,15 Matthew Lee-Wing,15 Yasaman Mohadjer,16 Navdeep Nijhawan,1 Felix Tyndel,17 Arun NE Sundaram,17 Martin W ten Hove,18 John J Chen,19 Amadeo R Rodriguez,20 Angela Hu,21 Nader Khalidi,21 Royce Ing,22 Samuel WK Wong,23 Nurhan Torun24 1Ophthalmology, University of Toronto, Toronto, ON, Canada; 2Ophthalmology, Johns Hopkins University, Baltimore, MD, USA; 3Statistics, MacEwan University, Edmonton, AB, Canada; 4Ophthalmology, Western University, London, ON, Canada; 5Queens University, Kingston, ON, Canada; 6Ophthalmology, University of Saskatchewan, Saskatoon, SK, Canada; 7Laval University, Quebec, QC, Canada; 8Ophthalmology, University of Ottawa, Ottawa, ON, Canada; 9University of Ottawa, Ottawa, ON, Canada; 10Ophthalmology, McGill University, Montreal, QC, Canada; 11University of Sherbrooke, QC, Canada; 12University of British Columbia, Vancouver, BC, Canada; 13Ophthalmology, University of British Columbia, Vancouver, BC, Canada; 14Ophthalmology, University of Virginia, Fisherville, VA, USA; 15Ophthalmology, University of Manitoba, Winnipeg, MB, Canada; 16Ophthalmology, Eye Institute of West Florida, Tampa, FL, USA; 17Neurology, University of Toronto, Toronto, ON, Canada; 18Ophthalmology, Queens University, Toronto, ON, Canada; 19Ophthalmology & Neurology, Mayo Clinic, Rochester, MN, USA; 20Ophthalmology, McMaster University, Hamilton, ON, Canada; 21Rheumatology, McMaster University, Hamilton, ON, Canada; 22Undergraduate Science, Ryerson University, Toronto, ON, Canada; 23Statistics, University of Waterloo, Waterloo, ON, Canada; 24Ophthalmology, Harvard University, Boston, MA, USA Purpose: To develop and validate neural network (NN) vs logistic regression (LR) diagnostic prediction models in patients with suspected giant cell arteritis (GCA). Design: Multicenter retrospective chart review.Methods: An audit of consecutive patients undergoing temporal artery biopsy (TABx) for suspected GCA was conducted at 14 international medical centers. The outcome variable was biopsy-proven GCA. The predictor variables were age, gender, headache, clinical temporal artery abnormality, jaw claudication, vision loss, diplopia, erythrocyte sedimentation rate, C-reactive protein, and platelet level. The data were divided into three groups to train, validate, and test the models. The NN model with the lowest false-negative rate was chosen. Internal and external validations were performed.Results: Of 1,833 patients who underwent TABx, there was complete information on 1,201 patients, 300 (25%) of whom had a positive TABx. On multivariable LR age, platelets, jaw claudication, vision loss, log C-reactive protein, log erythrocyte sedimentation rate, headache, and clinical temporal artery abnormality were statistically significant predictors of a positive TABx (P≤0.05). The area under the receiver operating characteristic curve/Hosmer–Lemeshow P for LR was 0.867 (95% CI, 0.794, 0.917)/0.119 vs NN 0.860 (95% CI, 0.786, 0.911)/0.805, with no statistically significant difference of the area under the curves (P=0.316). The misclassification rate/false-negative rate of LR was 20.6%/47.5% vs 18.1%/30.5% for NN. Missing data analysis did not change the results.Conclusion: Statistical models can aid in the triage of patients with suspected GCA. Misclassification remains a concern, but cutoff values for 95% and 99% sensitivities are provided (https://goo.gl/THCnuU). Keywords: giant cell arteritis, temporal artery biopsy, neural network, logistic regression, prediction models, ophthalmology, rheumatology  
format article
author Ing EB
Miller NR
Nguyen A
Su W
Bursztyn LLCD
Poole M
Kansal V
Toren A
Albreiki D
Mouhanna JG
Muladzanov A
Bernier M
Gans M
Lee D
Wendel C
Sheldon C
Shields M
Bellan L
Lee-Wing M
Mohadjer Y
Nijhawan N
Tyndel F
Sundaram ANE
ten Hove MW
Chen JJ
Rodriguez AR
Hu A
Khalidi N
Ing R
Wong SWK
Torun N
author_facet Ing EB
Miller NR
Nguyen A
Su W
Bursztyn LLCD
Poole M
Kansal V
Toren A
Albreiki D
Mouhanna JG
Muladzanov A
Bernier M
Gans M
Lee D
Wendel C
Sheldon C
Shields M
Bellan L
Lee-Wing M
Mohadjer Y
Nijhawan N
Tyndel F
Sundaram ANE
ten Hove MW
Chen JJ
Rodriguez AR
Hu A
Khalidi N
Ing R
Wong SWK
Torun N
author_sort Ing EB
title Neural network and logistic regression diagnostic prediction models for giant cell arteritis: development and validation
title_short Neural network and logistic regression diagnostic prediction models for giant cell arteritis: development and validation
title_full Neural network and logistic regression diagnostic prediction models for giant cell arteritis: development and validation
title_fullStr Neural network and logistic regression diagnostic prediction models for giant cell arteritis: development and validation
title_full_unstemmed Neural network and logistic regression diagnostic prediction models for giant cell arteritis: development and validation
title_sort neural network and logistic regression diagnostic prediction models for giant cell arteritis: development and validation
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/d9856a79330c4ec5be247b628474ab1f
work_keys_str_mv AT ingeb neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT millernr neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT nguyena neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT suw neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT bursztynllcd neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT poolem neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT kansalv neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT torena neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT albreikid neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT mouhannajg neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT muladzanova neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT bernierm neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT gansm neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT leed neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT wendelc neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT sheldonc neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT shieldsm neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT bellanl neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT leewingm neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT mohadjery neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT nijhawann neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT tyndelf neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT sundaramane neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT tenhovemw neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT chenjj neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT rodriguezar neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT hua neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT khalidin neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT ingr neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT wongswk neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
AT torunn neuralnetworkandlogisticregressiondiagnosticpredictionmodelsforgiantcellarteritisdevelopmentandvalidation
_version_ 1718399483589427200
spelling oai:doaj.org-article:d9856a79330c4ec5be247b628474ab1f2021-12-02T07:23:47ZNeural network and logistic regression diagnostic prediction models for giant cell arteritis: development and validation1177-5483https://doaj.org/article/d9856a79330c4ec5be247b628474ab1f2019-02-01T00:00:00Zhttps://www.dovepress.com/neural-network-and-logistic-regression-diagnostic-prediction-models-fo-peer-reviewed-article-OPTHhttps://doaj.org/toc/1177-5483Edsel B Ing,1 Neil R Miller,2 Angeline Nguyen,2 Wanhua Su,3 Lulu LCD Bursztyn,4 Meredith Poole,5 Vinay Kansal,6 Andrew Toren,7 Dana Albreki,8 Jack G Mouhanna,9 Alla Muladzanov,10 Mikaël Bernier,11 Mark Gans,10 Dongho Lee,12 Colten Wendel,13 Claire Sheldon,13 Marc Shields,14 Lorne Bellan,15 Matthew Lee-Wing,15 Yasaman Mohadjer,16 Navdeep Nijhawan,1 Felix Tyndel,17 Arun NE Sundaram,17 Martin W ten Hove,18 John J Chen,19 Amadeo R Rodriguez,20 Angela Hu,21 Nader Khalidi,21 Royce Ing,22 Samuel WK Wong,23 Nurhan Torun24 1Ophthalmology, University of Toronto, Toronto, ON, Canada; 2Ophthalmology, Johns Hopkins University, Baltimore, MD, USA; 3Statistics, MacEwan University, Edmonton, AB, Canada; 4Ophthalmology, Western University, London, ON, Canada; 5Queens University, Kingston, ON, Canada; 6Ophthalmology, University of Saskatchewan, Saskatoon, SK, Canada; 7Laval University, Quebec, QC, Canada; 8Ophthalmology, University of Ottawa, Ottawa, ON, Canada; 9University of Ottawa, Ottawa, ON, Canada; 10Ophthalmology, McGill University, Montreal, QC, Canada; 11University of Sherbrooke, QC, Canada; 12University of British Columbia, Vancouver, BC, Canada; 13Ophthalmology, University of British Columbia, Vancouver, BC, Canada; 14Ophthalmology, University of Virginia, Fisherville, VA, USA; 15Ophthalmology, University of Manitoba, Winnipeg, MB, Canada; 16Ophthalmology, Eye Institute of West Florida, Tampa, FL, USA; 17Neurology, University of Toronto, Toronto, ON, Canada; 18Ophthalmology, Queens University, Toronto, ON, Canada; 19Ophthalmology & Neurology, Mayo Clinic, Rochester, MN, USA; 20Ophthalmology, McMaster University, Hamilton, ON, Canada; 21Rheumatology, McMaster University, Hamilton, ON, Canada; 22Undergraduate Science, Ryerson University, Toronto, ON, Canada; 23Statistics, University of Waterloo, Waterloo, ON, Canada; 24Ophthalmology, Harvard University, Boston, MA, USA Purpose: To develop and validate neural network (NN) vs logistic regression (LR) diagnostic prediction models in patients with suspected giant cell arteritis (GCA). Design: Multicenter retrospective chart review.Methods: An audit of consecutive patients undergoing temporal artery biopsy (TABx) for suspected GCA was conducted at 14 international medical centers. The outcome variable was biopsy-proven GCA. The predictor variables were age, gender, headache, clinical temporal artery abnormality, jaw claudication, vision loss, diplopia, erythrocyte sedimentation rate, C-reactive protein, and platelet level. The data were divided into three groups to train, validate, and test the models. The NN model with the lowest false-negative rate was chosen. Internal and external validations were performed.Results: Of 1,833 patients who underwent TABx, there was complete information on 1,201 patients, 300 (25%) of whom had a positive TABx. On multivariable LR age, platelets, jaw claudication, vision loss, log C-reactive protein, log erythrocyte sedimentation rate, headache, and clinical temporal artery abnormality were statistically significant predictors of a positive TABx (P≤0.05). The area under the receiver operating characteristic curve/Hosmer–Lemeshow P for LR was 0.867 (95% CI, 0.794, 0.917)/0.119 vs NN 0.860 (95% CI, 0.786, 0.911)/0.805, with no statistically significant difference of the area under the curves (P=0.316). The misclassification rate/false-negative rate of LR was 20.6%/47.5% vs 18.1%/30.5% for NN. Missing data analysis did not change the results.Conclusion: Statistical models can aid in the triage of patients with suspected GCA. Misclassification remains a concern, but cutoff values for 95% and 99% sensitivities are provided (https://goo.gl/THCnuU). Keywords: giant cell arteritis, temporal artery biopsy, neural network, logistic regression, prediction models, ophthalmology, rheumatology  Ing EBMiller NRNguyen ASu WBursztyn LLCDPoole MKansal VToren AAlbreiki DMouhanna JGMuladzanov ABernier MGans MLee DWendel CSheldon CShields MBellan LLee-Wing MMohadjer YNijhawan NTyndel FSundaram ANEten Hove MWChen JJRodriguez ARHu AKhalidi NIng RWong SWKTorun NDove Medical Pressarticlegiant cell arteritistemporal artery biopsyneural networklogistic regressionprediction modelsOphthalmologyRE1-994ENClinical Ophthalmology, Vol Volume 13, Pp 421-430 (2019)