Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals

Abstract The biological toolkits for aerobic respiration were critical for the rise and diversification of early animals. Aerobic life forms generate ATP through the oxidation of organic molecules in a process known as Krebs’ Cycle, where the enzyme isocitrate dehydrogenase (IDH) regulates the cycle...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bruno Santos Bezerra, Flavia Ariany Belato, Beatriz Mello, Federico Brown, Christopher J. Coates, Juliana de Moraes Leme, Ricardo I. F. Trindade, Elisa Maria Costa-Paiva
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d9a4072476a8469a8bb2c1a733d72d69
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d9a4072476a8469a8bb2c1a733d72d69
record_format dspace
spelling oai:doaj.org-article:d9a4072476a8469a8bb2c1a733d72d692021-12-02T14:53:35ZEvolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals10.1038/s41598-021-95094-42045-2322https://doaj.org/article/d9a4072476a8469a8bb2c1a733d72d692021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95094-4https://doaj.org/toc/2045-2322Abstract The biological toolkits for aerobic respiration were critical for the rise and diversification of early animals. Aerobic life forms generate ATP through the oxidation of organic molecules in a process known as Krebs’ Cycle, where the enzyme isocitrate dehydrogenase (IDH) regulates the cycle's turnover rate. Evolutionary reconstructions and molecular dating of proteins related to oxidative metabolism, such as IDH, can therefore provide an estimate of when the diversification of major taxa occurred, and their coevolution with the oxidative state of oceans and atmosphere. To establish the evolutionary history and divergence time of NAD-dependent IDH, we examined transcriptomic data from 195 eukaryotes (mostly animals). We demonstrate that two duplication events occurred in the evolutionary history of NAD-IDH, one in the ancestor of eukaryotes approximately at 1967 Ma, and another at 1629 Ma, both in the Paleoproterozoic Era. Moreover, NAD-IDH regulatory subunits β and γ are exclusive to metazoans, arising in the Mesoproterozoic. Our results therefore support the concept of an ‘‘earlier-than-Tonian’’ diversification of eukaryotes and the pre-Cryogenian emergence of a metazoan IDH enzyme.Bruno Santos BezerraFlavia Ariany BelatoBeatriz MelloFederico BrownChristopher J. CoatesJuliana de Moraes LemeRicardo I. F. TrindadeElisa Maria Costa-PaivaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Bruno Santos Bezerra
Flavia Ariany Belato
Beatriz Mello
Federico Brown
Christopher J. Coates
Juliana de Moraes Leme
Ricardo I. F. Trindade
Elisa Maria Costa-Paiva
Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals
description Abstract The biological toolkits for aerobic respiration were critical for the rise and diversification of early animals. Aerobic life forms generate ATP through the oxidation of organic molecules in a process known as Krebs’ Cycle, where the enzyme isocitrate dehydrogenase (IDH) regulates the cycle's turnover rate. Evolutionary reconstructions and molecular dating of proteins related to oxidative metabolism, such as IDH, can therefore provide an estimate of when the diversification of major taxa occurred, and their coevolution with the oxidative state of oceans and atmosphere. To establish the evolutionary history and divergence time of NAD-dependent IDH, we examined transcriptomic data from 195 eukaryotes (mostly animals). We demonstrate that two duplication events occurred in the evolutionary history of NAD-IDH, one in the ancestor of eukaryotes approximately at 1967 Ma, and another at 1629 Ma, both in the Paleoproterozoic Era. Moreover, NAD-IDH regulatory subunits β and γ are exclusive to metazoans, arising in the Mesoproterozoic. Our results therefore support the concept of an ‘‘earlier-than-Tonian’’ diversification of eukaryotes and the pre-Cryogenian emergence of a metazoan IDH enzyme.
format article
author Bruno Santos Bezerra
Flavia Ariany Belato
Beatriz Mello
Federico Brown
Christopher J. Coates
Juliana de Moraes Leme
Ricardo I. F. Trindade
Elisa Maria Costa-Paiva
author_facet Bruno Santos Bezerra
Flavia Ariany Belato
Beatriz Mello
Federico Brown
Christopher J. Coates
Juliana de Moraes Leme
Ricardo I. F. Trindade
Elisa Maria Costa-Paiva
author_sort Bruno Santos Bezerra
title Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals
title_short Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals
title_full Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals
title_fullStr Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals
title_full_unstemmed Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals
title_sort evolution of a key enzyme of aerobic metabolism reveals proterozoic functional subunit duplication events and an ancient origin of animals
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d9a4072476a8469a8bb2c1a733d72d69
work_keys_str_mv AT brunosantosbezerra evolutionofakeyenzymeofaerobicmetabolismrevealsproterozoicfunctionalsubunitduplicationeventsandanancientoriginofanimals
AT flaviaarianybelato evolutionofakeyenzymeofaerobicmetabolismrevealsproterozoicfunctionalsubunitduplicationeventsandanancientoriginofanimals
AT beatrizmello evolutionofakeyenzymeofaerobicmetabolismrevealsproterozoicfunctionalsubunitduplicationeventsandanancientoriginofanimals
AT federicobrown evolutionofakeyenzymeofaerobicmetabolismrevealsproterozoicfunctionalsubunitduplicationeventsandanancientoriginofanimals
AT christopherjcoates evolutionofakeyenzymeofaerobicmetabolismrevealsproterozoicfunctionalsubunitduplicationeventsandanancientoriginofanimals
AT julianademoraesleme evolutionofakeyenzymeofaerobicmetabolismrevealsproterozoicfunctionalsubunitduplicationeventsandanancientoriginofanimals
AT ricardoiftrindade evolutionofakeyenzymeofaerobicmetabolismrevealsproterozoicfunctionalsubunitduplicationeventsandanancientoriginofanimals
AT elisamariacostapaiva evolutionofakeyenzymeofaerobicmetabolismrevealsproterozoicfunctionalsubunitduplicationeventsandanancientoriginofanimals
_version_ 1718389416430403584