Discovering de novo peptide substrates for enzymes using machine learning
The discovery of peptide substrates for enzymes with selective activities is a central goal in chemical biology. Here, the authors develop a hybrid method combining machine learning and experimental testing for fast optimization of peptides for specific, orthogononal functions.
Guardado en:
Autores principales: | Lorillee Tallorin, JiaLei Wang, Woojoo E. Kim, Swagat Sahu, Nicolas M. Kosa, Pu Yang, Matthew Thompson, Michael K. Gilson, Peter I. Frazier, Michael D. Burkart, Nathan C. Gianneschi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d9ae7a50ccf5436cb95b497dfe663903 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction
por: Andrea S. Carlini, et al.
Publicado: (2019) -
On the optimality of the enzyme-substrate relationship in bacteria.
por: Hugo Dourado, et al.
Publicado: (2021) -
On the optimality of the enzyme–substrate relationship in bacteria
por: Hugo Dourado, et al.
Publicado: (2021) -
Self-assembling peptides imaged by correlated liquid cell transmission electron microscopy and MALDI-imaging mass spectrometry
por: Mollie A. Touve, et al.
Publicado: (2019) -
An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio
por: Anastasiia Sadybekov, et al.
Publicado: (2017)