Pixel-Level Analysis for Enhancing Threat Detection in Large-Scale X-ray Security Images
Threat detection in X-ray security images is critical for preserving public safety. Recently, deep learning algorithms have begun to be adopted for threat detection tasks in X-ray security images. However, most of the prior works in this field have largely focused on using image-level classification...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d9b2c6f96ee047ee9290f62a77c0a293 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d9b2c6f96ee047ee9290f62a77c0a293 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d9b2c6f96ee047ee9290f62a77c0a2932021-11-11T15:17:53ZPixel-Level Analysis for Enhancing Threat Detection in Large-Scale X-ray Security Images10.3390/app1121102612076-3417https://doaj.org/article/d9b2c6f96ee047ee9290f62a77c0a2932021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10261https://doaj.org/toc/2076-3417Threat detection in X-ray security images is critical for preserving public safety. Recently, deep learning algorithms have begun to be adopted for threat detection tasks in X-ray security images. However, most of the prior works in this field have largely focused on using image-level classification and object-level detection approaches. Adopting object separation as a pixel-level approach to analyze X-ray security images can significantly improve automatic threat detection. In this paper, we investigated the effects of incorporating segmentation deep learning models in the threat detection pipeline of a large-scale imbalanced X-ray dataset. We trained a Faster R-CNN (region-based convolutional neural network) model to localize possible threat regions in the X-ray security images on a balanced dataset to maximize detection of true positives. Then, we trained a DeepLabV3+ model to verify the preliminary detections by classifying each pixel in the threat regions, which resulted in the suppression of false positives. The two models were combined in one detection pipeline to produce the final detections. Experiment results demonstrate that the proposed method significantly outperformed previous baseline methods and end-to-end instance segmentation methods, achieving mean average precisions (m<i>AP</i>s) of 94.88%, 91.40%, and 89.42% across increasing scales of imbalance in the practical dataset.Joanna Kazzandra DumagpiYong-Jin JeongMDPI AGarticleX-raythreat detectionsemantic segmentationinstance segmentationdeep learningsecurityTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10261, p 10261 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
X-ray threat detection semantic segmentation instance segmentation deep learning security Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
X-ray threat detection semantic segmentation instance segmentation deep learning security Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 Joanna Kazzandra Dumagpi Yong-Jin Jeong Pixel-Level Analysis for Enhancing Threat Detection in Large-Scale X-ray Security Images |
description |
Threat detection in X-ray security images is critical for preserving public safety. Recently, deep learning algorithms have begun to be adopted for threat detection tasks in X-ray security images. However, most of the prior works in this field have largely focused on using image-level classification and object-level detection approaches. Adopting object separation as a pixel-level approach to analyze X-ray security images can significantly improve automatic threat detection. In this paper, we investigated the effects of incorporating segmentation deep learning models in the threat detection pipeline of a large-scale imbalanced X-ray dataset. We trained a Faster R-CNN (region-based convolutional neural network) model to localize possible threat regions in the X-ray security images on a balanced dataset to maximize detection of true positives. Then, we trained a DeepLabV3+ model to verify the preliminary detections by classifying each pixel in the threat regions, which resulted in the suppression of false positives. The two models were combined in one detection pipeline to produce the final detections. Experiment results demonstrate that the proposed method significantly outperformed previous baseline methods and end-to-end instance segmentation methods, achieving mean average precisions (m<i>AP</i>s) of 94.88%, 91.40%, and 89.42% across increasing scales of imbalance in the practical dataset. |
format |
article |
author |
Joanna Kazzandra Dumagpi Yong-Jin Jeong |
author_facet |
Joanna Kazzandra Dumagpi Yong-Jin Jeong |
author_sort |
Joanna Kazzandra Dumagpi |
title |
Pixel-Level Analysis for Enhancing Threat Detection in Large-Scale X-ray Security Images |
title_short |
Pixel-Level Analysis for Enhancing Threat Detection in Large-Scale X-ray Security Images |
title_full |
Pixel-Level Analysis for Enhancing Threat Detection in Large-Scale X-ray Security Images |
title_fullStr |
Pixel-Level Analysis for Enhancing Threat Detection in Large-Scale X-ray Security Images |
title_full_unstemmed |
Pixel-Level Analysis for Enhancing Threat Detection in Large-Scale X-ray Security Images |
title_sort |
pixel-level analysis for enhancing threat detection in large-scale x-ray security images |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/d9b2c6f96ee047ee9290f62a77c0a293 |
work_keys_str_mv |
AT joannakazzandradumagpi pixellevelanalysisforenhancingthreatdetectioninlargescalexraysecurityimages AT yongjinjeong pixellevelanalysisforenhancingthreatdetectioninlargescalexraysecurityimages |
_version_ |
1718435589208932352 |