Predictive modeling for peri-implantitis by using machine learning techniques
Abstract The purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1...
Guardado en:
Autores principales: | Tomoaki Mameno, Masahiro Wada, Kazunori Nozaki, Toshihito Takahashi, Yoshitaka Tsujioka, Suzuna Akema, Daisuke Hasegawa, Kazunori Ikebe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d9b9b3695a65420184b374821fe3a48f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning-based detection of dental prostheses and restorations
por: Toshihito Takahashi, et al.
Publicado: (2021) -
Collagen Quantification in Peri-implant Soft Tissues in Human Peri-Implantitis Lesions
por: Flores,Valentina, et al.
Publicado: (2021) -
Machine learning approach for the prediction of postpartum hemorrhage in vaginal birth
por: Munetoshi Akazawa, et al.
Publicado: (2021) -
Efficacy of alternative or adjunctive measures to conventional non-surgical and surgical treatment of peri-implant mucositis and peri-implantitis: a systematic review and meta-analysis
por: Ausra Ramanauskaite, et al.
Publicado: (2021) -
Influence of macrophage polarization on the effectiveness of surgical therapy of peri-implantitis
por: Maria Elisa Galarraga-Vinueza, et al.
Publicado: (2021)