Training deep quantum neural networks

It is hard to design quantum neural networks able to work with quantum data. Here, the authors propose a noise-robust architecture for a feedforward quantum neural network, with qudits as neurons and arbitrary unitary operations as perceptrons, whose training procedure is efficient in the number of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J. Osborne, Robert Salzmann, Daniel Scheiermann, Ramona Wolf
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/d9ba2b872323438c9255d08c30daee30
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d9ba2b872323438c9255d08c30daee30
record_format dspace
spelling oai:doaj.org-article:d9ba2b872323438c9255d08c30daee302021-12-02T15:37:08ZTraining deep quantum neural networks10.1038/s41467-020-14454-22041-1723https://doaj.org/article/d9ba2b872323438c9255d08c30daee302020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-14454-2https://doaj.org/toc/2041-1723It is hard to design quantum neural networks able to work with quantum data. Here, the authors propose a noise-robust architecture for a feedforward quantum neural network, with qudits as neurons and arbitrary unitary operations as perceptrons, whose training procedure is efficient in the number of layers.Kerstin BeerDmytro BondarenkoTerry FarrellyTobias J. OsborneRobert SalzmannDaniel ScheiermannRamona WolfNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-6 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Kerstin Beer
Dmytro Bondarenko
Terry Farrelly
Tobias J. Osborne
Robert Salzmann
Daniel Scheiermann
Ramona Wolf
Training deep quantum neural networks
description It is hard to design quantum neural networks able to work with quantum data. Here, the authors propose a noise-robust architecture for a feedforward quantum neural network, with qudits as neurons and arbitrary unitary operations as perceptrons, whose training procedure is efficient in the number of layers.
format article
author Kerstin Beer
Dmytro Bondarenko
Terry Farrelly
Tobias J. Osborne
Robert Salzmann
Daniel Scheiermann
Ramona Wolf
author_facet Kerstin Beer
Dmytro Bondarenko
Terry Farrelly
Tobias J. Osborne
Robert Salzmann
Daniel Scheiermann
Ramona Wolf
author_sort Kerstin Beer
title Training deep quantum neural networks
title_short Training deep quantum neural networks
title_full Training deep quantum neural networks
title_fullStr Training deep quantum neural networks
title_full_unstemmed Training deep quantum neural networks
title_sort training deep quantum neural networks
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/d9ba2b872323438c9255d08c30daee30
work_keys_str_mv AT kerstinbeer trainingdeepquantumneuralnetworks
AT dmytrobondarenko trainingdeepquantumneuralnetworks
AT terryfarrelly trainingdeepquantumneuralnetworks
AT tobiasjosborne trainingdeepquantumneuralnetworks
AT robertsalzmann trainingdeepquantumneuralnetworks
AT danielscheiermann trainingdeepquantumneuralnetworks
AT ramonawolf trainingdeepquantumneuralnetworks
_version_ 1718386263148462080