Training deep quantum neural networks
It is hard to design quantum neural networks able to work with quantum data. Here, the authors propose a noise-robust architecture for a feedforward quantum neural network, with qudits as neurons and arbitrary unitary operations as perceptrons, whose training procedure is efficient in the number of...
Guardado en:
Autores principales: | Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J. Osborne, Robert Salzmann, Daniel Scheiermann, Ramona Wolf |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d9ba2b872323438c9255d08c30daee30 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Energy cost of entanglement extraction in complex quantum systems
por: Cédric Bény, et al.
Publicado: (2018) -
Barren plateaus in quantum neural network training landscapes
por: Jarrod R. McClean, et al.
Publicado: (2018) -
Quantum-chemical insights from deep tensor neural networks
por: Kristof T. Schütt, et al.
Publicado: (2017) -
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
por: Sajith Kecheril Sadanandan, et al.
Publicado: (2017) -
Efficient representation of quantum many-body states with deep neural networks
por: Xun Gao, et al.
Publicado: (2017)