Computational models of category-selective brain regions enable high-throughput tests of selectivity

Distinct brain regions are claimed to respond selectively to faces, places and bodies, but what counts as a face, place or body is less well defined. Here we build computational models that accurately predict the response of these regions to novel images, enabling stronger tests and confirmation of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: N. Apurva Ratan Murty, Pouya Bashivan, Alex Abate, James J. DiCarlo, Nancy Kanwisher
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/d9c8cf3114034a60be95c24ad337054d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d9c8cf3114034a60be95c24ad337054d
record_format dspace
spelling oai:doaj.org-article:d9c8cf3114034a60be95c24ad337054d2021-12-02T15:14:56ZComputational models of category-selective brain regions enable high-throughput tests of selectivity10.1038/s41467-021-25409-62041-1723https://doaj.org/article/d9c8cf3114034a60be95c24ad337054d2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25409-6https://doaj.org/toc/2041-1723Distinct brain regions are claimed to respond selectively to faces, places and bodies, but what counts as a face, place or body is less well defined. Here we build computational models that accurately predict the response of these regions to novel images, enabling stronger tests and confirmation of their selectivity.N. Apurva Ratan MurtyPouya BashivanAlex AbateJames J. DiCarloNancy KanwisherNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
N. Apurva Ratan Murty
Pouya Bashivan
Alex Abate
James J. DiCarlo
Nancy Kanwisher
Computational models of category-selective brain regions enable high-throughput tests of selectivity
description Distinct brain regions are claimed to respond selectively to faces, places and bodies, but what counts as a face, place or body is less well defined. Here we build computational models that accurately predict the response of these regions to novel images, enabling stronger tests and confirmation of their selectivity.
format article
author N. Apurva Ratan Murty
Pouya Bashivan
Alex Abate
James J. DiCarlo
Nancy Kanwisher
author_facet N. Apurva Ratan Murty
Pouya Bashivan
Alex Abate
James J. DiCarlo
Nancy Kanwisher
author_sort N. Apurva Ratan Murty
title Computational models of category-selective brain regions enable high-throughput tests of selectivity
title_short Computational models of category-selective brain regions enable high-throughput tests of selectivity
title_full Computational models of category-selective brain regions enable high-throughput tests of selectivity
title_fullStr Computational models of category-selective brain regions enable high-throughput tests of selectivity
title_full_unstemmed Computational models of category-selective brain regions enable high-throughput tests of selectivity
title_sort computational models of category-selective brain regions enable high-throughput tests of selectivity
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d9c8cf3114034a60be95c24ad337054d
work_keys_str_mv AT napurvaratanmurty computationalmodelsofcategoryselectivebrainregionsenablehighthroughputtestsofselectivity
AT pouyabashivan computationalmodelsofcategoryselectivebrainregionsenablehighthroughputtestsofselectivity
AT alexabate computationalmodelsofcategoryselectivebrainregionsenablehighthroughputtestsofselectivity
AT jamesjdicarlo computationalmodelsofcategoryselectivebrainregionsenablehighthroughputtestsofselectivity
AT nancykanwisher computationalmodelsofcategoryselectivebrainregionsenablehighthroughputtestsofselectivity
_version_ 1718387602569035776