A GPU-accelerated algorithm for biclustering analysis and detection of condition-dependent coexpression network modules
Abstract In the analysis of large-scale gene expression data, it is important to identify groups of genes with common expression patterns under certain conditions. Many biclustering algorithms have been developed to address this problem. However, comprehensive discovery of functionally coherent bicl...
Guardado en:
Autores principales: | Anindya Bhattacharya, Yan Cui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d9e8880e632845f5a19149333a3dfca0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Detect Adversarial Attacks Against Deep Neural Networks With GPU Monitoring
por: Tommaso Zoppi, et al.
Publicado: (2021) -
Geometric interpretation of gene coexpression network analysis.
por: Steve Horvath, et al.
Publicado: (2008) -
QServer: a biclustering server for prediction and assessment of co-expressed gene clusters.
por: Fengfeng Zhou, et al.
Publicado: (2012) -
Weighted Gene Coexpression Network Analysis Identifies Specific Modules and Hub Genes Related to Major Depression
por: Zhang G, et al.
Publicado: (2020) -
Comparative transcriptomics and network analysis define gene coexpression modules that control maize aleurone development and auxin signaling
por: Hao Wu, et al.
Publicado: (2021)