State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives
Summary: Accurate state of health (SOH) prediction is significant to guarantee operation safety and avoid latent failures of lithium-ion batteries. With the development of communication and artificial intelligence technologies, a body of researches have been performed toward precise and reliable SOH...
Guardado en:
Autores principales: | Xing Shu, Shiquan Shen, Jiangwei Shen, Yuanjian Zhang, Guang Li, Zheng Chen, Yonggang Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d9e93810ba434890864e31059f126034 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A review of atomic layer deposition for high lithium-ion battery performance
por: Edy Riyanto, et al.
Publicado: (2021) -
Strategies for High Energy Density Dual‐Ion Batteries Using Carbon‐Based Cathodes
por: Zhenyu Guo, et al.
Publicado: (2021) -
China's vehicle electrification impacts on sales, fuel use, and battery material demand through 2050: Optimizing consumer and industry decisions
por: Shiqi Ou, et al.
Publicado: (2021) -
Compensation of unbalance forces of a switched reluctance machine by separate control of phase currents
por: Thomas HINTERDORFER, et al.
Publicado: (2015) -
Progress and Perspectives in Designing Flexible Microsupercapacitors
por: La Li, et al.
Publicado: (2021)