A Data Loss Recovery Technique Using EMD-BiGRU Algorithm for Structural Health Monitoring
Missing data caused by sensor faults is a common problem in structural health monitoring systems. Due to negative effects, many methods that adopt measured data to infer missing data have been proposed to tackle this problem in previous studies. However, capturing complex correlations from measured...
Guardado en:
Autores principales: | Die Liu, Yihao Bao, Yingying He, Likai Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d9eec81b31f14cb699fde61b4ec779f5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sentiment Analysis of Review Text Based on BiGRU-Attention and Hybrid CNN
por: Qiannan Zhu, et al.
Publicado: (2021) -
Short-term traffic flow prediction of expressway based on CEEMD-GRU combination model
por: Fuxin SHEN, et al.
Publicado: (2021) -
A Hybrid Model Based on LFM and BiGRU Toward Research Paper Recommendation
por: Xu Zhao, et al.
Publicado: (2020) -
EMD-RF-LSTM: Combination Prediction Model of Dissolved Oxygen Concentration in Prawn Culture
por: YIN Hang, et al.
Publicado: (2021) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
por: Ravichandra Madanu, et al.
Publicado: (2021)